
www.embedded-world.eu

Bridging the Gap Between Requirements,

Architecture, and Implementation
 A Systems Engineering Solution for Model-Based Design

Marc Segelken

Application Engineering
MathWorks

Ismaning, Germany

msegelke@mathworks.com

Abstract—How can we perform systems engineering tasks

associated with standards like ARP 4754 and ISO 26262 part 4,

while ensuring that the key derived requirements filter down to

the implementation? Performing large-scale system design and

upgrades is a task of ever-increasing complexity. Traceability and

synchronization across all design levels is key to streamlining

large-scale development programs. However, there is often a

missing link between systems engineering and design

implementation in a top-down design process.

In this work it will be demonstrated how to bridge the gap

between systems engineering and implementation in a top-down

legacy systems upgrade project. The example case study shall

follow the update of key system-level requirements and

architectural modifications down to identification of the required

design implementation. Finally, a system-level tradeoff analysis

shall be performed to assess the high-level impact of the upgrade

on the complete system.

Keywords—systems engineering, requirements decomposition,

architecture modeling, stereotypes, architectural analysis, trade

studies

I. INTRODUCTION

With the ever-increasing size and complexity of systems;
requirements that must be engineered, maintained, derived,
allocated, and adhered to; and constraints on performance, costs,
time-to-market, power consumption, weight, and other areas,
systems engineering is a challenge that needs to address these
factors throughout the design of system architectures. The
outcome of this process is typically a set of starting points for
the design of the sub-components, with interface descriptions,
sub-constraints, and derived requirements.

The following presents a top-down architecture design
approach focusing on some key activities and aspects that
complements Model-Based Design with architecture modeling
based on stereotyped components with properties for system
analysis. To enable a focus on each component without losing
crucial system context information, requirements traceability for
the system and (derived) component level and the use of filtered

views for handling system complexity are key. An easy
transition to development of the system and guaranteed
consistency are other key issues for success.

II. DECOMPOSITION OF REQUIREMENTS AND ALLOCATION

TO ARCHITECTURE MODEL

A systems engineering project typically begins with high-
level requirements and optionally a legacy system that could
partially or structurally be reused to some extent. The main task
is to create an architecture with sub-components, each allocated
to derived requirements to fulfill their share of the overall
functionality, with as many hierarchy levels involved as
appropriate. Thus, this structural decomposition is accompanied
by a similar decomposition of the requirements such that the
constraints of each sub-component are sufficiently defined.

Due to the creative nature of this design space exploration,
many iterations and refinement steps are typically needed before
a satisfactory solution is produced. Subsequent feasibility
studies require considerable additional information, especially
on non-functional constraints to be met by the components and
the overall system. Therefore, this type of information should
also be carefully decomposed throughout architecture design.
Typically, several architectures, not just one, are produced and
need to be evaluated and compared with respect to performance,
cost, time-to-market, and other factors, to choose the final, most
suitable architecture solution.

The types of requirements to be considered are outlined in
the following sections.

A. Non-functional requirements

Many requirements are referring to life-cycle issues or other
non-functional constraints. Possible solutions have properties
such as weight, cost, reliability, development effort, and other
domain-specific design data that need to fit these non-functional
requirements—as well as their compositions—on each
hierarchy level.

Accordingly, a hierarchy of stereotypes has to be defined,
representing each type of sub-component and capturing

properties as needed, including the non-functional requirements
mentioned above. This way the corresponding characteristics of
the chosen components can be maintained, whether they are
commercial off the shelf (COTS) or still to be developed. To
perform trade studies with different component solutions and
different architectures, each solution needs to be analyzed with
respect to the non-functional requirements. A simple example
would be the determination of the mass and therefore the weight
of a certain architectural solution. The analysis here is simply to
add all components’ mass properties to compute the overall
mass. Another simple example would be the production costs or
development costs of a system, which would get computed the
same way. For more complex systems, tool support is needed to
get such numbers quickly while exploring different architectural
solutions. With such tools, optimizing architectures based on
trade study results requires much less effort.

B. Functional requirements

Temporal performance constraints aside, functional
requirements are typically not addressed specifically on the
architectural level, other than getting decomposed into derived
requirements in parallel with the system decomposition.
Performing a complete analysis at this early stage is possible
with formalized requirements, but due to the difficulty of getting
a complete set of requirements and assumptions, this assume-
guarantee reasoning is applied very rarely in practice and is not
covered by this methodology approach. Instead, simulation is
proposed on the component and architecture levels to validate
requirements consistency locally as well as overall system
behavior.

Therefore, the ability to simulate the very same overall
architecture model that was used to define components with
their interfaces and interconnections is needed to avoid any
mistakes caused by a rupture of systems engineering and design
flow.

III. COMPLEXITY HANDLING

By definition, systems are more complex than just the
software or just the hardware, or any other segmentation of the
system. Focusing just on parts of the system during any design
activity is mandatory to not get lost or tangled in complexity
issues. However, if important context information about the role
of a component or its intra-system environment is missing,
specification or design flaws become inevitable.

So, a suitable subset (view) of the system needs to be set up
to understand a specific design or analysis concern, with only
the minimum required context information—everything not
relevant for the task at hand needs to be hidden.

While finding an appropriate view meeting the criteria
mentioned above is demanding, it is typically not sufficient to
have just one view for a sub-part of the system. One-view-fits-
all does not work here, since different perspectives of looking at
the system require different views that are all overlapping:
functional dependencies, organizational dependencies,
bottleneck views, power consumption considerations, supplier
dependencies, maturity levels, failure probability views, safety
integrity level sections, and so on. A complete understanding of
a specific design or analysis concern requires quick switching

among the huge number of different groupings and filters
needed on the (sub-)systems.

Since all such different views on a system always need to be
consistent, tool support is crucial to define and use such views.

IV. TOOL SUPPORT

Due to the size and complexity of systems, classical
approaches with drawing tools and table spreadsheets to account
for custom properties and corresponding analysis are no longer
appropriate. The probability of consistency issues and problems
caused by out-of-date data is just too high if there is no dedicated
tool support to keep data together and consistent. This is even
more true for any manual approach to create something like a
view on the system, focusing only on specific aspects and
leaving out all the rest. Thus, systems engineering tools or
development environments for software and for hardware that
provide solutions for the challenges and tasks outlined above are
highly recommended.

For using the architectural structure, interface definitions,
allocated requirements, etc., for subsequent behavioral
specification design, it is also highly recommended to have this
systems engineering functionality integrated with a development
environment that allows seamless continuation of work on
component level as well as automatic integration in the
architectural model including system simulation capabilities for
validation.

For Model-Based Design—designing mixed software and
hardware systems with automatic code generation and including
physical parts and the environment for simulation purposes—
such systems engineering functionality is available with the
products System Composer and Simulink Requirements, which
integrate with and extend Simulink with all the capabilities
discussed above.

V. CONCLUSION

This paper outlined some key aspects of systems
engineering: a) architectural decomposition with parallel
requirements decomposition and allocation, b) using stereotypes
for components assigning property values for all kinds of non-
functional requirements or engineering information, including
corresponding analysis of this information on the system level,
c) handling systems’ inherent complexity with a concept of
different views that show only the minimum required context
information for the task at hand, and d) without any risk of
information loss or inconsistency, seamlessly designing
component specifications based on the interface definitions from
the architectural model. This includes the capability of
simulating the architectural model for validation purposes based
on the behavior specified for the components.

Other aspects were not discussed such as the role of an
architecture model to enable communication between multiple
stakeholders.

Among other things, these are solutions that are
recommended to be supported by systems engineering tools to
remove error-prone manual data keeping and analysis. System
Composer and Simulink Requirements are extensions to
Simulink and Model-Based Design that allow users to sketch

www.embedded-world.eu

hierarchical system and software decompositions of components
offering exactly these capabilities.

MATLAB and Simulink are registered trademarks of The
MathWorks, Inc. See mathworks.com/trademarks for a list of
additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

© 2020 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

