
www.embedded-world.eu

How to prove that your C/C++ code is

safe and secure

Christian Guß
Application Engineering
The MathWorks GmbH
52064 Aachen, Germany

Abstract—Are you afraid of finding critical software bugs too

late? Would you like to obtain evidence that your code, either self-

written or not, is free from overflow, divide-by-zero, out-of-

bounds array access, and other run-time errors before you use it

in safety- and security-critical systems? Do you need to comply

with safety and security standards or guidelines like MISRA, SEI

CERT-C, or ISO/IEC TS 17961? In this paper, I discuss

sophisticated static analysis methods that verify and prove the

absence of run-time errors and vulnerabilities in the source code

at unit and integration levels. Utilizing sound formal methods that

consider all potential inputs, control- and data flows without code

execution, organizations can gain confidence that the software

they rely on is safe and secure. This gives organizations more than

a mere error detection tool -- it reduces testing and verification

costs, and makes code quality transparent across entire teams.

Keywords—static code analysis, safety, secuity, quality

objectives, guidelines, metrics, HIS, MISRA, CERT-C, IEC TS

17961, ISO 26262, functional safety, cybersecurity, dynamic analysis

I. INTRODUCTION

Modern software development is constantly challenged to be
fast and low-cost. However, it is notoriously difficult to gain
confidence on the safety and security of the produced software
in such a setting. This challenge is particularly relevant for high
integrity embedded systems, which must reliably perform their
intended functionality under all circumstances. Their
development process must follow rigorous functional safety
standards like IEC 61508 and ISO 26262, which even require to
provide proof for the absence of errors. It is well known that such
proof cannot be obtained by dynamic testing alone, and that
companies often overshoot time or cost budgets in an attempt to
comply with safety standards. The right static analysis methods
and tools effectively address this challenge by providing the
needed proofs automatically, and thereby reduce development
time and risks.

II. SOPHISTICATED SOFTWARE ANALYIS METHODS

A. Dynamic Software Execution (Testing)

The dynamic execution of code is a widely accepted method
of quality assurance for software. This is the only method that
can be easily applied on the target hardware as well. Dynamic
execution of programs is suitable for detecting the presence of
errors, but not their absence [1]. This is because (in real
applications) the test cases are never exhaustive. Even with full
decision, condition and MC/DC coverage, not all possible
combinations of input values and parameters are covered,
leaving room for subtle defects in numerics, pointers, array
accesses and more. Testing is therefore essential, but insufficient
to obtain evidence in software quality.

B. Software Review and Walkthrough

A software review can uncover additional errors by
systematically inspecting the code for patterns and anomalies.
The effect of this time-consuming method is highly dependent
on the skills and focus of the human reviewer. Especially the
implicit rules of the C language can be easily overseen, as shown
in code example [Fig. 1].

1 unsigned int a = -1; -
2 if (a < 0u) -
3 { -

Fig. 1. Example for c-code that implicitly converts a signed variable into a
signed value before comparison with an unsigned value

To compare variable ‘a’ with the unsigned value ‘0’, the left
side operand ‘a’ is implicitly casted in line 2 into a relatively
large unsigned value [Fig. 1]. The human brain is not trained to
find patterns like this in huge amounts of unprocessed code, but
great in evaluating and classifying already observed
abnormalities. Code reviews like this become more effective
with computer assisted pre-analyzed code.

C. Coding Guidelines – Reduction of Language Subset

Just because the compiler accepts certain language
constructs does not mean that it is a good idea to use them. A

very famous example in MISRA C:2012 Rule 15.1 [2] is the
usage restriction of the “goto” statement, which makes the
program unstructured and difficult to understand. Coding
guidelines like MISRA are supposed to help to avoid these
doubtful programming techniques. Where finding “goto”
statements only requires a text search, it looks a lot more difficult
with other rules. The SEI CERT-C rule MSC37-C “Ensure that
control never reaches the end of a non-void function” sounds
reasonable, because leaving the scope of such a function might
return a random value [3]. By further processing this return
value, for example in the form of
“if(is_password_ok(void))”, a security vulnerability is
created. To detect these deep data and control flow-based
problems, sophisticated analysis methods are required.

D. Static Code Analysis

There is a broad range of methods that can be found behind
the term static code analysis. The most general description and
unique similarity of all is that they do not need to execute the
code for verification. Even some compilers give warnings about
possible mistakes. For example, the flag
“-Wuninitialized” for GNU GCC can catch simple cases of
uninitialized variables [4]. Utilizing these warnings makes
sense, since every finding can be fixed at an early stage. Early
stage also means applying static code analysis before
dynamically testing functional requirements, because even a
non-initialized variable can cause your code to behave
randomly. Testing on random behavior is a common systematic
verification mistake which can be recognized by flipping test
results without any change.

Although compiler warnings and simple static code analysis
tools are helpful, their scope and capabilities are limited. The
methods used are mostly based on pattern-matching and
heuristics and might not be able to handle the complex control
and data flows that occur, for example, during pass-by-reference
function calls across multiple compilation units.

The precision of static code analysis can be judged by
comparing the truth vs. analysis verdict of each result:

- True-Positive: Detect actual bug in the code.

- False-Negative: Fail to detect bug in the code.

- False-Positive: Healthy code reported as containing
bug.

- True-Negative: Healthy code reported as healthy.

An analysis method is “sound” if it never produces False-
Negatives. The precision of the results must be measured with
different code examples. Results on single file cannot simply be
transferred to a complex multi file analysis. A tool for static
code analysis must be considered according to these criteria.
For example, the MISRA C:2012 guideline contains system-
decidable rules that are listed as mandatory [2]. Compliance to
this widely accepted guideline therefore requires a tool that
provides deep control and data flow analysis at the integrated
code and not only on unit level.

E. Formal Verification

Formal verification is a static approach to measure dynamic
software quality attributes. It is proving the correctness of
atomic operations in the source code regarding to run-time errors
[5]. Abstract Interpretation [10] as a formal method use sound
approximation of states in computer programs in a more general
form. Abstract interpretation thoroughly analyzes all variables
of the code.

The substantial computing power required for this analysis
has not been readily available in the past. Abstract interpretation,
when combined with today’s increased processing power, is a
practical solution to complex testing challenges. When applied
to the detection of run-time errors, abstract interpretation
performs a comprehensive verification of all risky operations
and automatically diagnoses each operation as proven, failed,
unreachable, or unproven. Engineers can use abstract
interpretation to obtain results at compilation time, the earliest
stage of the testing [6].

III. INDUSTRY USAGE OF FORMAL VERIFICATION
 When it comes to proving that software is safe and secure,
the use of formal verification is essential. However, the
motivation for proving code may vary from company to
company.

A. Mapping to functional fastety standards

 External motivations are very common when companies
decide to use formal methods. Functional safety standards, such
as IEC 61508 and ISO 26262-6, recommend or even require the
use of formal methods in higher safety integrity levels (SIL). For
these companies, compliance with such standards requires the
use of formal methods for unit verification.

B. Customer – Supplier relationship

 Another significant reason for proving the absence of errors
is delivered software. This very often affects supplier
relationships in the automotive, aviation and space industries.
But also, in-house deliveries and legacy code as well. Delivery
requirements are usually defined in advance and can be defined,
monitored and reported by using the concept of Software
Quality Objectives (SQO) [7]. This makes it possible to define
less restrict quality requirements in early project phases than in
later phases, such as closely before production.

C. Development process and responsibilities

It is the way formal methods are used during the
development process that often determines their effectiveness.
Especially when used for compliance with functional safety
standards, formal methods are often applied very late in the
development process on the whole program code, to prove code
correctness. The task is often performed by integration
departments and not by the original developers. The main goal
in this stage is often to demonstrate compliance towards
obtaining final approval, rather than finding and fixing all
lingering defects. However, tools for formal verification are
designed by their nature to provide a lot of information about the
code's nature and potential issues. This information is useful for
the developer to fix mistakes and to improve the code design
(additional range-checks etc.) but rather overwhelming for
quality engineers in a final development stage.

www.embedded-world.eu

Since the formal verification can prove that software units
are free from errors in every integration, the entire set of all
software unit proofs is sufficient for the evidence of absence of
runtime errors (which are in scope) on the entire integration as
well.

For software integrators, a verification tool is suitable which
can quickly and efficiently check entire integrations for coding
standards and integration defects and compare them with the
predefined quality goals.

In summary, different tasks and roles in a company require
different approaches and tools. The developer wants to get
detailed results on unit level, and the integrator to get
compliance results on integration level. For the company it is
worthwhile to find a complementary and role-specific tool
approach.

IV. TOOL SUPPORT FOR FORMAL VERIFICATION

Formal verification is powerful when applied to the right
software component and used by the right people in the
company. MathWorks has developed Polyspace Code Prover™
[8] for this purpose. The tool uses abstract interpretation as a
formal method to prove mathematically sound the absence of
critical run-time errors like division by zeros, overflow, array
access out of bounds, among others.

For many situations, however, a precise and fast static code
analysis tool without mathematical proof is enough. To address
this need, MathWorks has developed Polyspace Bug Finder™
[8] as a second complementary tool. The tool also uses the
method of abstract interpretation, but trades off soundness for
less false positives in the detection of hundreds of defect
categories, various coding guidelines from safety and security
like CERT-C, CWE, ISO/IEC TS 17961 and code metrics
violations.

Both tools Polyspace Bug Finder™ and Polyspace Code
Prover™ are intended to be used complementary in the
development process. Polyspace Bug Finder™ for the analysis
of the entire software for defects, compliance to coding
standards and metrics. As well as Polyspace Code Prover™ on
critical components as early as possible in the development
process to influence design decisions.

A. Compliance and reporting

MathWorks offers a Certification Kit to support tool
qualification for common safety standards. Polyspace creates
reports that document the code assessment including the review
comments from the team.

For easier collaboration in larger teams, Polyspace can be
extended with Polyspace Access™ [9] a browser-based code
review tool that provides code analysis results from a
continuous integration server to the team. This will allow
companies to share code quality trends across the team and
establish a centralized review workflow across the development
cycle.

V. CONCLUSION AND OUTLOOK

Methods and tools to prove that code is safe and secure exist
and are used actively by companies during development,
especially in the functional safety environment. Nevertheless,
the effectiveness depends on the chosen usage. While
developers can use the results on a small scope very well to
influence design decisions, many tasks, such as finding defects,
coding guideline violations and metrics, can be done by static
analysis methods with minimized false-positives.

Relying on compiler warnings or simple pattern matching
algorithms alone is often not enough. It is essential for
companies to define a strategy for using the right method and
supporting tools along the development process.

REFERENCES
[1] Dijkstra, “Notes On Structured Programming”, 1972
[2] Guidelines for the Use of the C Language in Critical Systems, ISBN 978-

1-906400-10-1 (paperback), ISBN 978-1-906400-11-8 (PDF), March
2013

[3] SEI CERT. C Coding Standard: Rules for Developing Safe, Reliable, and
Secure Systems. 2016

[4] Using the GNU Compiler Collection (GCC),
<https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html>

[5] Wissing K., “Static Analysis of Dynam–c Properties - Automatic Program
Verification to Prove the Absence of Dynamic Runtime Errors”

[6] Code Verification and Run-Time Error Detection Through Abstract
Interpretation. White paper, MathWorks, www.polyspace.com, 2019

[7] Software Quality Objectives for Source Code v.3.0,
<http://www.mathworks.com/tagteam/72337_Software_Quality_Objecti
ves_V3.0.pdf>

[8] Polyspace Product Page, MathWorks,
<http://de.mathworks.com/products/polyspace/>

[9] Polyspace Access Product Page, MathWorks,
<https://www.mathworks.com/products/polyspace-bug-
finder.html#access>

[10] Cousot & Cousot, “Abstract Interpretation”, Proc. Symposium on
Principles of programming languages, Los Angeles USA, 1977

© 2020 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

https://www.sei.cmu.edu/downloads/sei-cert-c-coding-standard-2016-v01.pdf
https://www.sei.cmu.edu/downloads/sei-cert-c-coding-standard-2016-v01.pdf
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
http://www.polyspace.com/
http://de.mathworks.com/products/polyspace/
https://www.mathworks.com/products/polyspace-bug-finder.html#access
https://www.mathworks.com/products/polyspace-bug-finder.html#access

