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Abstract—Are you afraid of finding critical software bugs too 

late? Would you like to obtain evidence that your code, either self-

written or not, is free from overflow, divide-by-zero, out-of-

bounds array access, and other run-time errors before you use it 

in safety- and security-critical systems? Do you need to comply 

with safety and security standards or guidelines like MISRA, SEI 

CERT-C, or ISO/IEC TS 17961? In this paper, I discuss 

sophisticated static analysis methods that verify and prove the 

absence of run-time errors and vulnerabilities in the source code 

at unit and integration levels. Utilizing sound formal methods that 

consider all potential inputs, control- and data flows without code 

execution, organizations can gain confidence that the software 

they rely on is safe and secure. This gives organizations more than 

a mere error detection tool -- it reduces testing and verification 

costs, and makes code quality transparent across entire teams. 
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I. INTRODUCTION

Modern software development is constantly challenged to be 
fast and low-cost. However, it is notoriously difficult to gain 
confidence on the safety and security of the produced software 
in such a setting. This challenge is particularly relevant for high 
integrity embedded systems, which must reliably perform their 
intended functionality under all circumstances. Their 
development process must follow rigorous functional safety 
standards like IEC 61508 and ISO 26262, which even require to 
provide proof for the absence of errors. It is well known that such 
proof cannot be obtained by dynamic testing alone, and that 
companies often overshoot time or cost budgets in an attempt to 
comply with safety standards. The right static analysis methods 
and tools effectively address this challenge by providing the 
needed proofs automatically, and thereby reduce development 
time and risks. 

II. SOPHISTICATED SOFTWARE ANALYIS METHODS

A. Dynamic Software Execution (Testing)

The dynamic execution of code is a widely accepted method
of quality assurance for software. This is the only method that 
can be easily applied on the target hardware as well. Dynamic 
execution of programs is suitable for detecting the presence of 
errors, but not their absence [1]. This is because (in real 
applications) the test cases are never exhaustive. Even with full 
decision, condition and MC/DC coverage, not all possible 
combinations of input values and parameters are covered, 
leaving room for subtle defects in numerics, pointers, array 
accesses and more. Testing is therefore essential, but insufficient 
to obtain evidence in software quality. 

B. Software Review and Walkthrough

A software review can uncover additional errors by
systematically inspecting the code for patterns and anomalies. 
The effect of this time-consuming method is highly dependent 
on the skills and focus of the human reviewer. Especially the 
implicit rules of the C language can be easily overseen, as shown 
in code example [Fig. 1].  

1  unsigned int a = -1;                     - 
2  if (a < 0u)                              -  
3  {                                        - 

Fig. 1. Example for c-code that implicitly converts a signed variable into a 
signed value before comparison with an unsigned value  

To compare variable ‘a’ with the unsigned value ‘0’, the left 
side operand ‘a’ is implicitly casted in line 2 into a relatively 
large unsigned value [Fig. 1]. The human brain is not trained to 
find patterns like this in huge amounts of unprocessed code, but 
great in evaluating and classifying already observed 
abnormalities. Code reviews like this become more effective 
with computer assisted pre-analyzed code. 

C. Coding Guidelines – Reduction of Language Subset

Just because the compiler accepts certain language
constructs does not mean that it is a good idea to use them. A 



very famous example in MISRA C:2012 Rule 15.1 [2] is the 
usage restriction of the “goto” statement, which makes the 
program unstructured and difficult to understand. Coding 
guidelines like MISRA are supposed to help to avoid these 
doubtful programming techniques. Where finding “goto” 
statements only requires a text search, it looks a lot more difficult 
with other rules. The SEI CERT-C rule MSC37-C “Ensure that 
control never reaches the end of a non-void function” sounds 
reasonable, because leaving the scope of such a function might 
return a random value [3]. By further processing this return 
value, for example in the form of 
“if(is_password_ok(void))”, a security vulnerability is 
created. To detect these deep data and control flow-based 
problems, sophisticated analysis methods are required. 

D. Static Code Analysis 

There is a broad range of methods that can be found behind 
the term static code analysis. The most general description and 
unique similarity of all is that they do not need to execute the 
code for verification. Even some compilers give warnings about 
possible mistakes. For example, the flag  
“-Wuninitialized” for GNU GCC can catch simple cases of 
uninitialized variables [4]. Utilizing these warnings makes 
sense, since every finding can be fixed at an early stage. Early 
stage also means applying static code analysis before 
dynamically testing functional requirements, because even a 
non-initialized variable can cause your code to behave 
randomly. Testing on random behavior is a common systematic 
verification mistake which can be recognized by flipping test 
results without any change.  

Although compiler warnings and simple static code analysis 
tools are helpful, their scope and capabilities are limited. The 
methods used are mostly based on pattern-matching and 
heuristics and might not be able to handle the complex control 
and data flows that occur, for example, during pass-by-reference 
function calls across multiple compilation units. 

The precision of static code analysis can be judged by 
comparing the truth vs. analysis verdict of each result: 

- True-Positive: Detect actual bug in the code. 

- False-Negative: Fail to detect bug in the code. 

- False-Positive: Healthy code reported as containing 
bug. 

- True-Negative: Healthy code reported as healthy. 

An analysis method is “sound” if it never produces False-
Negatives. The precision of the results must be measured with 
different code examples. Results on single file cannot simply be 
transferred to a complex multi file analysis. A tool for static 
code analysis must be considered according to these criteria. 
For example, the MISRA C:2012 guideline contains system-
decidable rules that are listed as mandatory [2]. Compliance to 
this widely accepted guideline therefore requires a tool that 
provides deep control and data flow analysis at the integrated 
code and not only on unit level. 

E. Formal Verification 

Formal verification is a static approach to measure dynamic 
software quality attributes. It is proving the correctness of 
atomic operations in the source code regarding to run-time errors 
[5]. Abstract Interpretation [10] as a formal method use sound 
approximation of states in computer programs in a more general 
form. Abstract interpretation thoroughly analyzes all variables 
of the code.  

The substantial computing power required for this analysis 
has not been readily available in the past. Abstract interpretation, 
when combined with today’s increased processing power, is a 
practical solution to complex testing challenges. When applied 
to the detection of run-time errors, abstract interpretation 
performs a comprehensive verification of all risky operations 
and automatically diagnoses each operation as proven, failed, 
unreachable, or unproven. Engineers can use abstract 
interpretation to obtain results at compilation time, the earliest 
stage of the testing [6].  

III. INDUSTRY USAGE OF FORMAL VERIFICATION 
 When it comes to proving that software is safe and secure, 
the use of formal verification is essential. However, the 
motivation for proving code may vary from company to 
company. 

A. Mapping to functional fastety standards 

 External motivations are very common when companies 
decide to use formal methods. Functional safety standards, such 
as IEC 61508 and ISO 26262-6, recommend or even require the 
use of formal methods in higher safety integrity levels (SIL). For 
these companies, compliance with such standards requires the 
use of formal methods for unit verification. 

B. Customer – Supplier relationship 

 Another significant reason for proving the absence of errors 
is delivered software. This very often affects supplier 
relationships in the automotive, aviation and space industries. 
But also, in-house deliveries and legacy code as well. Delivery 
requirements are usually defined in advance and can be defined, 
monitored and reported by using the concept of Software 
Quality Objectives (SQO) [7]. This makes it possible to define 
less restrict quality requirements in early project phases than in 
later phases, such as closely before production. 

C. Development process and responsibilities 

It is the way formal methods are used during the 
development process that often determines their effectiveness. 
Especially when used for compliance with functional safety 
standards, formal methods are often applied very late in the 
development process on the whole program code, to prove code 
correctness. The task is often performed by integration 
departments and not by the original developers. The main goal 
in this stage is often to demonstrate compliance towards 
obtaining final approval, rather than finding and fixing all 
lingering defects. However, tools for formal verification are 
designed by their nature to provide a lot of information about the 
code's nature and potential issues. This information is useful for 
the developer to fix mistakes and to improve the code design 
(additional range-checks etc.) but rather overwhelming for 
quality engineers in a final development stage.  
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Since the formal verification can prove that software units 
are free from errors in every integration, the entire set of all 
software unit proofs is sufficient for the evidence of absence of 
runtime errors (which are in scope) on the entire integration as 
well. 

For software integrators, a verification tool is suitable which 
can quickly and efficiently check entire integrations for coding 
standards and integration defects and compare them with the 
predefined quality goals. 

In summary, different tasks and roles in a company require 
different approaches and tools. The developer wants to get 
detailed results on unit level, and the integrator to get 
compliance results on integration level. For the company it is 
worthwhile to find a complementary and role-specific tool 
approach. 

IV. TOOL SUPPORT FOR FORMAL VERIFICATION

Formal verification is powerful when applied to the right 
software component and used by the right people in the 
company. MathWorks has developed Polyspace Code Prover™ 
[8] for this purpose. The tool uses abstract interpretation as a
formal method to prove mathematically sound the absence of
critical run-time errors like division by zeros, overflow, array
access out of bounds, among others.

For many situations, however, a precise and fast static code 
analysis tool without mathematical proof is enough. To address 
this need, MathWorks has developed Polyspace Bug Finder™ 
[8] as a second complementary tool. The tool also uses the
method of abstract interpretation, but trades off soundness for
less false positives in the detection of hundreds of defect
categories, various coding guidelines from safety and security
like CERT-C, CWE, ISO/IEC TS 17961 and code metrics
violations.

Both tools Polyspace Bug Finder™ and Polyspace Code 
Prover™ are intended to be used complementary in the 
development process. Polyspace Bug Finder™ for the analysis 
of the entire software for defects, compliance to coding 
standards and metrics. As well as Polyspace Code Prover™ on 
critical components as early as possible in the development 
process to influence design decisions. 

A. Compliance and reporting

MathWorks offers a Certification Kit to support tool
qualification for common safety standards. Polyspace creates 
reports that document the code assessment including the review 
comments from the team. 

For easier collaboration in larger teams, Polyspace can be 
extended with Polyspace Access™ [9] a browser-based code 
review tool that provides code analysis results from a 
continuous integration server to the team. This will allow 
companies to share code quality trends across the team and 
establish a centralized review workflow across the development 
cycle. 

V. CONCLUSION AND OUTLOOK

Methods and tools to prove that code is safe and secure exist 
and are used actively by companies during development, 
especially in the functional safety environment. Nevertheless, 
the effectiveness depends on the chosen usage. While 
developers can use the results on a small scope very well to 
influence design decisions, many tasks, such as finding defects, 
coding guideline violations and metrics, can be done by static 
analysis methods with minimized false-positives. 

Relying on compiler warnings or simple pattern matching 
algorithms alone is often not enough. It is essential for 
companies to define a strategy for using the right method and 
supporting tools along the development process. 
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