
www.embedded-world.eu

Meeting Functional Safety Standards on Algorithm

Implementation for FPGA and ASIC in a Dynamic

Automotive Environment

Abstract— FPGAs and ASICs are playing a greater role across

an increasing variety of automotive systems and applications

because of their high throughput, low latency, and superior per-

watt performance. However, we see different challenges related to

their development in the automotive industry: There is a need for

efficient inter-team communication and collaboration in

multidisciplinary FPGA/programmable SoC and ASIC projects.

Changing requirements and shrinking design cycles require the

ability to react faster. Standards, such as ISO 26262 for functional

safety, must be fulfilled, while shorter project deadlines must be

met. Finally, the global chip shortage drives the need for

hardware-independent portable workflows, enabling more rapid

adaptation to changes in the supply chain and smoother

transitions from FPGAs to ASICs. This work explores an

integrated workflow for designing and implementing signal

processing, control design, and vision algorithms on FPGAs,

programmable SoCs, and ASICs to address these challenges. We

briefly cover the process-spanning requirements of authoring,

architectural modeling, and modeling for HDL implementation,

with verification and validation at each step. Furthermore, we

cover related hardware/software codesign aspects. We show how

an integrated, hardware-independent, and prequalified toolchain

enables users to streamline ISO 26262 certification.

Keywords—FPGA, SoC, ASIC, ISO26262, Functional Safety

I. INTRODUCTION

The electrical and electronics (E/E) components market is
projected to grow at a 5.6% compound annual growth rate
(CAGR). Autonomous driving and electrification of the
powertrain are among the major drivers behind this trend [1].
Regarding ADAS/AD sensor systems, Radar and Lidar are
expected to grow by 19.5% [2] and 13.5% [3], respectively. As

the automotive industry climbs the ladder of autonomy levels,
sensor resolution increases exponentially, requiring an
enormous amount of (pre-) processing to convert the raw data
into point clouds and detected objects. The complexity of signal
processing algorithms is also growing to meet performance
requirements. The need for higher throughput, low latency, and
improved per-watt requirements often cannot be met with CPU
or GPU implementations. In electrification, power electronics
control is one major application. Power-efficient and low-
vibration motor control requires complex algorithms with high
sampling frequency and reaction times that often exceed what is
achievable on today’s CPUs [4].

 As a result, FPGA and ASIC are increasingly the technology
of choice, often used as application-specific accelerators on
chips. At the same time, using embedded FPGAs (eFPGAs) is
an emerging trend. FPGAs may be replaced with ASICs
whenever justified by cost savings due to increases in production
volume or the need for lower power requirements.

 The growing complexity of FPGA and ASIC designs is
challenging conventional development methodologies, leading
to a disproportionate increase in required verification. SoC
designs add another layer of verification complexity due to
hardware/software interactions [5], especially in the presence of
multi-core and multi-tasking subsystems.

 The key question we address here is how to efficiently design
and verify our algorithms for FPGA and ASIC in an automotive
context, where device complexity keeps growing, design cycle
time shrinks, and the market demands high quality and standard
compliance. It is necessary first to understand the common
challenges the industry is facing to answer this question.

Dimitri Hamidi Dr. Tjorben Gross Eric Cigan Tom Richter

Application Engineering Application Engineering Product Manager Application Engineering

The MathWorks GmbH The MathWorks GmbH MathWorks Inc. The MathWorks GmbH

Munich, Germany Munich, Germany Natick, USA Munich, Germany

dhamidi@mathworks.com tgross@mathworks.com ecigan@mathworks.com trichte@mathworks.com

 A 2022 study by the Wilson Research Group (WRG) [5]
indicates that more than two-thirds of all FPGA and ASIC
projects are behind schedule. It also finds that more than half of
the development effort on FPGA and ASIC projects is spent on
verification activities, with debugging accounting for roughly a
quarter of the project time. Despite these efforts, over 80% of all
FPGA projects have non-trivial bug escapes into production,
even in safety-critical applications. These bugs could be traced
to logic and functional flaws in more than 50% of the cases. The
study additionally finds that design errors are the leading cause
of functional flaws, closely followed by problems related to
changing incorrect and incomplete specifications. Table 1
summarizes some of the key findings. Overall, these numbers
haven’t changed significantly over the last decade. Development
managers are using staff time to address the consequences of
these issues instead of focusing on the next technical projects to
help their companies grow and be more competitive.

 We attribute these findings primarily to design and
verification methodologies shortcomings based on translating
textual requirements and behavioral specification models into
RTL code and testbenches manually. They emerged over three
decades ago and remain the predominant paradigm today,
especially in safety-critical systems. In our further discussion,
we will refer to this workflow as the traditional development
process.

 Next, we present an integrated workflow for digital hardware
design and detail how it can address the challenges described
above.

II. MODEL BASED DESIGN FOR DIGITAL HARDWARE

Model-Based Design (MBD) is a mathematical and visual
approach to developing complex systems that systematically
use models throughout the development process. These
models represent multi-domain, cyber-physical systems,
including the environment, system components (e.g.,
electrical, AMS, RF, and mechanical), and software and
hardware algorithms; these models allow designers first to
understand behavior and find optimal design choices using
simulation long before actual implementation. Engineers can
generate optimized C/C++ and HDL code from models in the
context of embedded hardware and reuse model simulation
testbenches for deployment and verification.

Models serve as a common language throughout the
development process and promote cross-functional team
collaboration. Using models to refine product specifications
reduces the dependency on prototype availability and is a key
reason for faster product development and savings [6]. With
MBD, an integrated toolchain is used from systems
engineering throughout all project phases. It seamlessly
connects algorithms to system architectures, hardware designs,
and the verification process. MBD supports the core values of
agile development [9].

A. System level specification

System requirements are created by separate teams and
captured textually in a traditional development process using
tools such as Microsoft® Word® or IBM® Doors®. At the
same time, system architectures are specified in drawing tools,

making them difficult to analyze, interpret, and manage as
changes are made.

Validating these requirements can be difficult; an erroneous
specification could result that would then be translated into
design errors, as indicated in the WRG study. MBD begins with
the same set of system requirements as a traditional process.
However, it creates a system architecture with behavior and
architecture models using MATLAB®, Simulink®, and System
Composer™ instead of converting them into textual
specification [7]. The textual requirements can be imported,
managed, linked, and traced to the model’s components as
recommended by ISO 26262. This step helps to identify
unintended functionality and ensures requirements coverage,
and an executable specification of the system results. Engineers
can simulate these architecture models to elucidate
requirements and specifications, execute tradeoff analysis, and
uncover inconsistencies and integration issues before
implementation [6]. Known as Model Based System
Engineering (MBSE), this approach can produce up to 55%
overall savings after two years [8]. Using executable models
reduces dependency on textual requirements and resolves
ambiguities in product specification. MBSE is well in line with
recommendations of ISO 26262 - Part 4, covering product
development at the system level and allows to parallelize
system and safety engineering [10].

B. Detailed algorithm design for implementation

Specifications are manually translated into HDL code in a
traditional design process, which is time-consuming and error-
prone. Defects may be introduced, accumulated, and propagated
downstream at each phase. As a result, debugging consumes
roughly one-quarter of the overall development effort [5]. The
heterogeneous tool environment, multiple manual steps,
changing requirements, and late-stage defect detection
contribute significantly to the ubiquitous project delays [6].

MBD can alleviate those issues on multiple levels, and the
key is automatic RTL code generation. HDL Coder™ [11] can
generate VHDL or Verilog code from MATLAB®, Simulink®,
and Stateflow®. All can be combined within Simulink, and the
designer can choose a suitable data and control path design
methodology. Simulink® is a graphical environment for
hardware design, with models reflecting hardware architecture
and hardware concepts such as parallelism. Multi-rate systems
and asynchronous clock design are supported for code
generation. The generated code can match the model behavior
on the bit (numerical) and cycle level (timing), facilitating
debugging and verification.

An extensive Simulink block library and MATLAB
functions support automatic HDL code generation with proven
efficiency [24][25][26] for different applications, including
signal processing and communications, control design, and
computer vision. Many blocks are configurable, offering micro-
hardware architecture implementation choices. Fixed Point
Designer™ [12] helps analyze and convert floating point
algorithms to reduced-precision floating points or fixed points.
Math functions can be automatically converted into interpolated
lookup tables. HDL code generation supports floating points in
IEEE 754 half, single, and double precision. HDL Coder™
supports resource sharing and retiming optimizations.

www.embedded-world.eu

Moreover, resource mapping can be controlled for DSP
slices, BRAM, and lookup tables. These capabilities enable
design space exploration and evaluation in area, throughput,
latency, and power tradeoffs. The code is customizable,
readable, and well-structured, retaining model hierarchy and
signal naming, with different comments, such as data types. IP
cores with standard AXI interfaces can also be generated. Thus,
production-quality RTL code can be achieved from models at
high levels of abstraction.

Bidirectional traceability is supported as recommended by
ISO 26262 because the HDL code is traceable to the model. RTL
code is generated, and the model can be easily repurposed for
different FPGA target devices or transitioned to ASICs since
target-independent RTL code is generated. Manually written
HDL code can be integrated using cosimulation with HDL
simulators if required for system-level stimulation [13].

TÜV SÜD certifies HDL Coder™ as suitable for ASIL A-D
and can be classified as tool confidence level 1 (TCL1), meaning
that no additional qualification measures are required provided
that a verification and validation (V&V) workflow (described
below) is followed. The IEC Certification Kit [14] provides tool-
qualification artifacts, certificates, and tool-validation test suites
to streamline certification. This qualification lowers the
certification burden and supports toolchain upgrades.

MBD supports hardware-software codesign for SoC
platforms [15]. Algorithm models can be partitioned between
implementation in programmable logic and processor cores.
Production quality C/C++ code can be generated for the CPU
using Embedded Coder®, enabling communication with IP
cores via AXI4, AXI4-Lite, or AXI4-Stream interfaces.
Embedded Coder is similarly qualified for ASIL A-D as TCL1,
and the same model V&V tools can be leveraged, which we
describe in the next section.

SoC Blockset™ [16] allows simulating internal AXI
interfaces, DDR memory transactions, and multi-core task
scheduling to further help with SoC designs. The user can design
the data path and quickly explore hardware and software
partitioning performance. The whole application can be
deployed automatically for prototyping, and the simulated
performance can be validated using on-device profiling.

 Lastly, we assert that model-level debugging is more
efficient than debugging RTL implementations. Model changes
can be introduced rapidly. Simulink® library blocks are pre-
tested, and models are transparent regarding data types and sizes
and sampling times. Engineers can harness the data
visualization, logging, and analysis tools available through
MATLAB® and Simulink®, which go well beyond a logic
analyzer offered by HDL simulators. One can simplify the
analysis of large, complex models using model slicing [17] by
focusing on interest areas based on functional dependencies
determined via simulation or formal methods. This feature is
also useful for interference analysis freedom in the system
specification step, according to ISO 26262.

C. Continuous verification and validation

The main idea behind FPGA, SoC, and ASIC verification
in MBD is first to verify model’s behavior against its test
requirements using static and dynamic methods. In the second

stage, we automatically prove the behavioral equivalence
between the model and the generated HDL code and its
implementation on bits and cycle levels. The bulk of the
verification effort is shifted towards the model level, where it
is more directly linked to requirements, realizing the
semiconductor industry’s “shift-left” trend.

The first stage in this process deals with model-based
verification and validation (model V&V), intending to
demonstrate that the model used for production code
generation behaves as specified by the requirements and that
all requirements are implemented. Model V&V applies the
same set of techniques on models that are mainstream for
HDL code verification [5], namely formal methods and
simulation-based techniques. Formal methods provided by
Simulink® Design Verifier™ statically identify hidden design
errors in models such as division by zero, overflows, and dead
logic without using simulation. Formal property checking is
also supported: one can describe safety requirements in a
mathematical form, and the tool can prove or disprove
compliance and generate counterexamples in case of the latter.

Simulink provides simulation-based verification through
multi-domain, high-fidelity models of analog, mixed-signal,
RF, and mechatronic components support. These models may
be used to construct testbenches for algorithms designed for
implementation in hardware and software. Model coverage is
measured by several methods —execution, condition,
decision, modified condition/decision (MCDC) — and can be
highlighted in block diagrams and state machine models. This
approach ensures test completeness and unintended
functionality absence. An array of test tools is provided for
creating test sequences and assessments for different use cases
[18]. Constrained-random verification (CRV) can be applied
to verify models before code verification [19]. Various static
and dynamic assertion blocks also support assertion-based
verification (AVB). Test harnesses can be automatically
created to isolate components and apply a range of test
scenarios. Test cases and their assessment must be linked with
test requirements for measuring functional test coverage and
essentially perform requirement-based testing. The V&V
process can be centralized using the Test Manager [20], which
can be coupled with continuous integration (CI) tools such as
Jenkins [21]. While integrating components from different
development branches, differences between related models
can be displayed visually, and merging is possible.
Testbenches and test harnesses are added successively for
continuous verification and integration testing as designs
progress through the development cycle. V&V tool usage can
be qualified for ISO 26262 with a tool confidence level 2
(TCL2), and the IEC Certification Kit provides automated test
suits for ease of tool qualification.

HDL code verification is the second stage. The goal is to
demonstrate the equivalence of a Simulink specification model
and the generated RTL through simulation result comparison.
This step reuses the model testbenches automatically. It
ultimately ensures that the code is acting according to the
specification. This step reuses model testbenches in several
automated actions. The first is HDL cosimulation with logic
simulators such as Siemens® QuestaSim™ / ModelSim™,
Cadence® Xcelium®, or Xilinx® Vivado® [13]. An

automatically generated cosimulation testbench applies input
signals to the specification model and HDL code and
compares their outputs. Second, VHDL, Verilog, and
SystemVerilog DPI behavioral testbenches can be generated
by comparing the equality and assessing the path/fail behavior
with assertions. This method suits design teams running unit
tests using logic simulators on server farms. Model-level
assertions can also be converted into SystemVerilog
assertions. Third, design teams can generate Universal
Verification Methodology (UVM) environments or individual
verification components from Simulink models [22]. FPGA-
in-the-loop, a hardware-based method, may also verify the
equivalence between the model and the FPGA implementation
in an approach similar to HDL cosimulation. Code verification
workflows can be added to the Test Manager for regression
testing. Manually written HDL code can be integrated and
verified with cosimulation and FPGA-in-the-loop or by
leveraging the testbench export capabilities we just described.

Overall hardware integration testing is usually done using
the hardware in the loop. By using Speedgoat™ target
computers [23] — the same test harnesses and model tests
created for simulation — can be reused to test the integrated
system in real time. Plant models can be automatically
deployed along with test cases for real-time simulation on the
Speedgoat computer’s CPU or optional FPGA boards. During
the test execution, hardware board or ECU responses will be
collected and sent back to the Test Manager for validation.

III. CONCLUSION

We presented the current trends in the automotive industry

and the industry’s challenges involving the design of FPGAs,

programmable SoCs, and ASICs algorithm implementation.

We noted the issues with conventional design flows and

described how a model-based design approach could

significantly improve product quality, shorten development

time, reduce product costs, and enable more rapid responses in

requirements or implementation target changes. The ISO

26262-qualified, integrated toolchain promotes multi-domain

collaboration and ultimately helps streamline embedded

hardware algorithm design and certification.

REFERENCES

[1] O. Burkacky, J. Deichmann, J. P. Stein, “ Outlook on the automotive
software and electronics market through 2030,” McKinsy&Company
market analysis report

[2] Future Market Insights, “Automotive radar market outlook (2022-2032),”
Future Market Insights market analysis report

[3] Future Market Insights, “Mobile LiDAR scanner market overview,”
Future Market Insights market analysis report

[4] D. Seidel “The growing use of FPGAs in motor control,” in Electronic
Products.

[5] H. Foster, “The 2022 Wilson Research Group Functional Verification
Study”, Siemens.com

[6] MathWorks, “Measuring the return on investment of Model-Based
Design”, White paper

[7] MathWorks, “System Composer,” mathworks.com

[8] J. Krasner. “How product development organizations can Achieve long-
term cost savings using Model-Based Systems Engineering (MBSE), ” in
Embedded Market Forecasters

[9] R. Aarenstrup, G. Tomar “Agile and Model-Based Design for
Engineering Software Development,” mathworks.com

[10] M. Adedjouma, N. Yakymets. “A Model-Based Safe-by-Design approach
with IP reuse for automotive applications,“ ICSEA 2020 (2020): 122.

[11] MathWorks, “HDL Coder,” mathworks.com

[12] MathWorks, “Fixed Point Designer” mathworks.com

[13] MathWorks, “HDL Cosimulation with MATLAB or Simulink”
mathworks.com

[14] MathWorks, “IEC Certification Kit” mathworks.com

[15] MathWorks, “Hardware-Software Co-Design Overview” mathworks.com

[16] MathWorks, “SoC Blockset” mathworks.com

[17] MathWorks, “Simplify Model for Targeted Analysis of Complex Models
Using Model Slicer Tool” mathworks.com

[18] MathWorks, “Assessments, Criteria, and Verification” mathworks.com

[19] MathWorks, “Add Random Constraints to Sequences in UVM Test
Bench” mathworks.com

[20] MathWorks, “ Test Manager” mathworks.com

[21] D. Boissy, P. Urban, K. Balasubramanian, P. R. Cumbreras, C. Branch, J.
Pulipati “Continuous Integration for Verification of Simulink Models”,
mathworks.com

[22] MathWorks, “ UVM Component Generation Overview” mathworks.com

[23] Speedgoat.com

[24] MathWorks, “Renesas Designs and Implements Image Processing IP
Core for ASICs with Model-Based Design”, mathworks.com

[25] A. Mauderer, J. H. Oetjens “System-level design of mixed-signal ASICs
using Simulink: Efficient transitions to EDA environments” EETimes

[26] N. Kosugi, K. Hori, Y. Ishida, “Driving the Adoption of Model-Based
Design for Communications System Development at Hitachi”,
mathworks.com

© 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mckinsey.com/~/media/mckinsey/industries/automotive%20and%20assembly/our%20insights/mapping%20the%20automotive%20software%20and%20electronics%20landscape%20through%202030/automotive-software-and-electronics-2030-final.pdf
https://www.mckinsey.com/~/media/mckinsey/industries/automotive%20and%20assembly/our%20insights/mapping%20the%20automotive%20software%20and%20electronics%20landscape%20through%202030/automotive-software-and-electronics-2030-final.pdf
https://www.futuremarketinsights.com/reports/automotive-radar-market
https://www.futuremarketinsights.com/reports/mobile-lidar-scanner-market
https://www.electronicproducts.com/the-growing-use-of-fpgas-in-motor-control/#:~:text=By%20using%20FPGAs%20with%20custom,utilization%20of%20the%20DC%20bus.
https://blogs.sw.siemens.com/verificationhorizons/2022/10/10/prologue-the-2022-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2022/10/10/prologue-the-2022-wilson-research-group-functional-verification-study/
https://www.mathworks.com/content/dam/mathworks/white-paper/measuring-roi-of-model-based-design.pdf
https://www.mathworks.com/content/dam/mathworks/white-paper/measuring-roi-of-model-based-design.pdf
https://www.mathworks.com/products/system-composer.html
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:how_product_development_organizations_can_achieve_long-term_savings_1_.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:how_product_development_organizations_can_achieve_long-term_savings_1_.pdf
https://www.mathworks.com/company/newsletters/articles/agile-and-model-based-design-for-engineering-software-development.html
https://www.mathworks.com/company/newsletters/articles/agile-and-model-based-design-for-engineering-software-development.html
https://www.researchgate.net/profile/Luigi-Lavazza/publication/346965175_ICSEA_2020_The_Fifteenth_International_Conference_on_Software_Engineering_Advances/links/5fd4d34045851553a0af3f64/ICSEA-2020-The-Fifteenth-International-Conference-on-Software-Engineering-Advances.pdf#page=123
https://www.researchgate.net/profile/Luigi-Lavazza/publication/346965175_ICSEA_2020_The_Fifteenth_International_Conference_on_Software_Engineering_Advances/links/5fd4d34045851553a0af3f64/ICSEA-2020-The-Fifteenth-International-Conference-on-Software-Engineering-Advances.pdf#page=123
https://www.mathworks.com/products/hdl-coder.html
https://www.mathworks.com/products/fixed-point-designer.html
https://www.mathworks.com/help/hdlverifier/gs/hdl-cosimulation.html
https://www.mathworks.com/products/iec-61508.html
https://www.mathworks.com/help/supportpkg/usrpembeddedseriesradio/ug/hardware-software-co-design-overview.html
https://www.mathworks.com/products/soc.html
https://www.mathworks.com/help/slcheck/ug/create-a-simplified-standalone-model-using-the-model-slicer-tool.html
https://www.mathworks.com/help/slcheck/ug/create-a-simplified-standalone-model-using-the-model-slicer-tool.html
https://www.mathworks.com/help/sltest/test-sequences-and-assessments.html
https://www.mathworks.com/help/hdlverifier/ug/uvm_add_random_constraints_to_sequence.html
https://www.mathworks.com/help/hdlverifier/ug/uvm_add_random_constraints_to_sequence.html
https://www.mathworks.com/help/sltest/ref/testmanager.html
https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models.html
https://www.mathworks.com/help/hdlverifier/ug/uvm_component_generation_overview.html
https://www.speedgoat.com/
https://www.mathworks.com/company/user_stories/renesas-designs-and-implements-image-processing-ip-core-for-asics-with-model-based-design.html?s_tid=srchtitle
https://www.mathworks.com/company/user_stories/renesas-designs-and-implements-image-processing-ip-core-for-asics-with-model-based-design.html?s_tid=srchtitle
https://www.eetimes.com/system-level-design-of-mixed-signal-asics-using-simulink-efficient-transitions-to-eda-environments/
https://www.eetimes.com/system-level-design-of-mixed-signal-asics-using-simulink-efficient-transitions-to-eda-environments/
https://www.mathworks.com/company/newsletters/articles/driving-the-adoption-of-model-based-design-for-communications-system-development-at-hitachi.html?s_tid=srchtitle
https://www.mathworks.com/company/newsletters/articles/driving-the-adoption-of-model-based-design-for-communications-system-development-at-hitachi.html?s_tid=srchtitle

