

# Getting Started Guide for Quantum Computing with MATLAB



MATLAB Support Package for Quantum Computing lets you build, simulate, and run quantum algorithms. Overview and download >>

## Build <u>>></u>

#### Single Qubit Gate

Apply a single qubit gate to a quantum circuit. The quantity in parentheses () is the qubit index on which the gate is applied.

|                   | Quantum Circuit Object                             | Plot                                                                                                                                                                                   | Matrix                                         |
|-------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Syntax            | >> qc = quantumCircuit (xGate(1))                  | >> plot (qc)                                                                                                                                                                           | >> getMatrix(qc)                               |
| Output            | NumQubits:1<br>Gates:[1×1 quantum.gate.SimpleGate] | - x -                                                                                                                                                                                  | $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ |
| Single Qubit Gate | Description                                        | The rotation gates are single qubit gates that take two arguments. The first is the qubit index on which the gate is applied, and second is the rotation angle or phase (θ) in radian. |                                                |
| xGate(1)          | xGate = $\pi$ rotation around X-axis to qubit 1    |                                                                                                                                                                                        |                                                |
| yGate(1)          | yGate = $\pi$ rotation around Y-axis to qubit 1    |                                                                                                                                                                                        |                                                |
| zGate(1)          | zGate = $\pi$ rotation around Z-axis to qubit 1    | Parameterized                                                                                                                                                                          | Description                                    |
| sGate(1)          | sGate = $\pi/2$ positive rotation around Z-axis    | Single Qubit Gate                                                                                                                                                                      | -                                              |
| tGate(1)          | tGate = $\pi/2$ positive rotation around Z-axis    | rxGate(1,pi/2)                                                                                                                                                                         | rxGate = X-axis rotation gate                  |
| tiGate(1)         | tiGate = $\pi/2$ negative rotation around 7-axis   | ryGate(1,pi/2)                                                                                                                                                                         | ryGate = Y-axis rotation gate                  |
| hante (1)         | Cate Under and aste                                | rzGate(1,pi/2)                                                                                                                                                                         | rzGate = Z-axis rotation gate                  |
| nGate(1)          | hGate = Hadamard gate                              | rlGate = Z-axis rotation g<br>with global phase                                                                                                                                        | r1Gate = Z-axis rotation gate                  |
| idGate(1)         | idGate = Identity gate (does nothing)              |                                                                                                                                                                                        | with global phase                              |

#### Gates with One Control Qubit

Apply a gate with one control qubit to a quantum circuit. These gates have two arguments in parentheses (); the first is the control qubit and the second is the target qubit. If the control qubit is in the |0> state, then the gate does nothing. If the control qubit is in the |1> state, then the specified gate acts on the target qubit. >> cxGate(control,target)

Qubit index 1: control qubit Qubit index 2: target qubit The controlled rotation gates are two qubit gates that take three arguments. The first is the control qubit, the second is the target qubit, and third is the rotation angle or phase ( $\theta$ ) in radian.

| Two Qubit Gate | Description                                                                                | Parameterized Two<br>Qubit Gate | Description                                                    |
|----------------|--------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------|
| cxGate(1,2)    | cxGate or cnotGate = $\pi$ rotation around<br>X-axis to qubit 2 if qubit 1 is in  1> state | crxGate(1,2,pi/2)               | crxGate = Controlled X-axis<br>rotation gate                   |
| cyGate(1,2)    | cyGate = $\pi$ rotation around Y-axis to qubit<br>2 if qubit 1 is in  1> state             | cryGate(1,2,pi/2)               | cryGate = Controlled y-axis rotation gate                      |
| czGate(1,2)    | czGate = π rotation around Z-axis to qubit<br>2 if qubit 1 is in  1> state                 | crzGate(1,2,pi/2)               | crzGate = Controlled z-axis<br>rotation gate                   |
| chGate(1,2)    | czGate = Controlled Hadamard gate                                                          | cr1Gate(1,2,pi/2)               | cr1Gate = Controlled z-axis<br>rotation gate with global phase |



| Special Gates                |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |                                 |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Gate                         | Description                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                  |                                 |
| compositeGate<br>(qc, [1,2]) | Constructs a composite gate from an<br>inner quantum circuit and returns a<br>CompositeGate object. The qc is the<br>inner quantum circuit in the example.                                                                                                                                                                                                                                                  | In the gates below, the first and second arguments<br>are the qubit indices, and the third is phase (0),<br>except for the swapGate which has two<br>arguments. Swapping the two target qubits<br>for all the gates below does not change the<br>gate operation. |                                 |
| ccxGate(1,2,3)               | Controlled controlled X gate (CCNOT or Toffoli gate)                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                  |                                 |
|                              | Multi-controlled X gate<br>The first argument is three control qubits<br>(1,2,3), the second argument is one target<br>qubit (4), and the third argument is one ancil-<br>la qubits (5). This gate operates on a single<br>target qubit based on the states of the control<br>qubits, with a number of ancilla qubits that<br>determines the number of simple gates<br>Quantum Fourier transform (QFT) gate | Gate                                                                                                                                                                                                                                                             | Description                     |
| mcxGate(1:3,4,5)             |                                                                                                                                                                                                                                                                                                                                                                                                             | <pre>rxxGate(1,2,pi/2)</pre>                                                                                                                                                                                                                                     | Ising XX coupling gate          |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                             | ryyGate(1,2,pi/2)                                                                                                                                                                                                                                                | Ising YY coupling gate          |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                             | rzzGate(1,2,pi/2)                                                                                                                                                                                                                                                | Ising ZZ coupling gate          |
| qftGate(1:3)                 |                                                                                                                                                                                                                                                                                                                                                                                                             | <pre>swapGate(1,2)</pre>                                                                                                                                                                                                                                         | Swaps the values of the qubits. |

### Simulate >>

| Quantum Circuit Operations                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Operation                                                                                                                                        | Example                                                                                                                                                                                                                                                                                                                                             | Output                                                                                                                             |
| plot = Draw a quantum circuit                                                                                                                    | <pre>&gt;&gt; gates = [hGate(1); cxGate(1,2)]; &gt;&gt; bell = quantumCircuit(gates, name="bell"); % circuit &gt;&gt; plot(bell) %plot</pre>                                                                                                                                                                                                        | — н — • • • • • • • • • • • • • • • • •                                                                                            |
| <b>inv</b> = Inverse of a quantum circuit or gate                                                                                                | <pre>&gt;&gt; bell _ inverted = inv(bell); &gt;&gt; plot(bell _ inverted)</pre>                                                                                                                                                                                                                                                                     | н_                                                                                                                                 |
| <pre>getMatrix = Matrix representation of a quantum circuit or gate</pre>                                                                        | >> getMatrix(bell)                                                                                                                                                                                                                                                                                                                                  | $\begin{bmatrix} 0.707 & 0 & 0.707 & 0 \\ 0 & 0.707 & 0 & 0.707 \\ 0 & 0.707 & 0 & -0.707 \\ 0.707 & 0 & -0.707 & 0 \end{bmatrix}$ |
| generateQASM = Generate QASM<br>code                                                                                                             | >> generateQASM(bell)                                                                                                                                                                                                                                                                                                                               | <pre>"OPENQASM 3.0;<br/>include "stdgates.inc";<br/>qubit[2] q; bit[2] c; h<br/>q[0]; cx q[0],q[1];<br/>c = measure q;"</pre>      |
| simulate(circuit, inputState),<br>Simulate circuit and specify the ini-<br>tial quantum state of the circuit and<br>return a QuantumState object | >> simulate(bell)                                                                                                                                                                                                                                                                                                                                   | BasisStates: [4×1 string]<br>Amplitudes: [4×1 double]<br>NumQubits: 2                                                              |
| unpack = Unpack composite gates<br>inside a quantum circuit                                                                                      | <pre>&gt;&gt; cnot _ custom = [cxGate(1,2)]; &gt;&gt; qc _ inner = quantumCircuit(cnot _ custom); &gt;&gt; gates _ appended = [hGate(1) compositeGate(qc _ inner,[1 2]) compositeGate(qc _ inner,[2 3])]; &gt;&gt; circ= quantumCircuit(gates _ appended); &gt;&gt; plot(circ)%packed composite gate &gt;&gt; plot(unpack(circ, "recursive"))</pre> |                                                                                                                                    |

mathworks.com

© 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.



| Simulated Quantum Circuit Operations                                                                                                    |                                                                                                                                                                 |                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Operation                                                                                                                               | Example                                                                                                                                                         | Output                                                                                                  |
| Initialize the quantum state of the cir-<br>cuit where the qubit 1 (top qubit in<br>circuit plot) is set to  1> and second<br>is to  0> | S = simulate(bell,"10")                                                                                                                                         | QuantumState with properties:<br>BasisStates: [4×1 string]<br>Amplitudes: [4×1 double]<br>NumQubits: 2  |
| Show the output basis states and their amplitudes                                                                                       | S.BasisStates<br>S.Amplitudes                                                                                                                                   | BasisStates: ``00" "01" "10" "11"<br>Amplitudes: 0.7071 0 0 -0.7071                                     |
| Show the final state of the circuit<br>such as the basis in which to<br>represent each qubit                                            | f = formula(S)<br>f2 = formula(S,Basis="X")                                                                                                                     | <pre>ans = "0.70711 *  00&gt; + -0.70711 *  11&gt;" ans = "0.70711 *  +-&gt; + 0.70711 *  -+&gt;"</pre> |
| Show the possible states and the probability of measuring each state                                                                    | <pre>[states,P] = querystates(S)</pre>                                                                                                                          | states = "00" P = 0.5<br>"11" 0.5                                                                       |
| Randomly sample the quantum<br>state of the circuit with any number<br>of shots                                                         | <pre>M = randsample(S,50);<br/>T =<br/>table(m.Counts,m.Probabilities,m.<br/>MeasuredStates,<br/>VariableNames= ["Counts",<br/>"Probabilites", "States"])</pre> | ans =<br>2×3 table<br>Counts Probabilities States<br>28 0.56 <sup>°00"</sup><br>22 0.44 <sup>°11"</sup> |

| Run on AWS <u>&gt;&gt;</u> and IBM Quantum <u>&gt;&gt;</u>                                                       |                                                                                                                                                         |  |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Function                                                                                                         | Description                                                                                                                                             |  |
| <pre>dev = QuantumDeviceAWS (``SV1",Region=reg,S3Path=bucketPath)</pre>                                          | Connect to an Amazon Braket device, specifying the<br>name of the device as well as its region and the path<br>of the Amazon S3 bucket to store results |  |
| <pre>dev = QuantumDeviceIBM("ibmq _ qasm _ simulator",<br/>AccountName=myAccountName,FileName=myFileName);</pre> | Connect to an IBM quantum device, specifying<br>the name of the device and the account name<br>to authenticate using the associated credentials         |  |
| fetchDetails(device)                                                                                             | Get additional information about the device                                                                                                             |  |
| <pre>task = run(circuit, dev);</pre>                                                                             | Create a task to run the circuit on the device                                                                                                          |  |
| wait(task)                                                                                                       | Check the status of a task                                                                                                                              |  |
| <pre>meas = fetchOutput(task);</pre>                                                                             | Retrieve the result of the circuit run                                                                                                                  |  |



#### GitHub with Examples >>

Questions? quantum-computing-community-profile@groups.mathworks.com

mathworks.com

© 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.