Sim.l.am: A Robot Simulator
Coursera: Control of Mobile Robots

Jean-Pierre de la Croix

Last Updated: February 1, 2014

Contents

[I__Introductionl

I1.2 Requirements| e
[1.3 Bug Reporting]

2 Mobile Robot
2.1 IR Range Sensors|.

B—Simulator]

1 Introduction

This manual is going to be your resource for using the simulator with the programming assignments
featured in the Coursera course, Control of Mobile Robots (and included at the end of this manual). It
will be updated from time to time whenever new features are added to the simulator or any corrections
to the course material are made.

1.1 Installation

Download simiam-coursera-week-X.zip (where X is the corresponding week number for the assignment)
from the course page on Coursera under Programming Assignments. Make sure to download a new copy
of the simulator before you start a new week’s programming assignment, or whenever an announcement
is made that a new version is available. It is important to stay up-to-date, since new versions may contain
important bug fixes or features required for the programming assignment.

Unzip the .zip file to any directory.

1.2 Requirements

You will need a reasonably modern computer to run the robot simulator. While the simulator will run
on hardware older than a Pentium 4, it will probably be a very slow experience. You will also need a
copy of MATLAB.

Thanks to support from MathWorks, a license for MATLAB and all required toolboxes is available
to all students for the duration of the course. Check the Getting Started with MATLAB section under
Programming Assignments on the course page for detailed instructions on how to download and install
MATLAB on your computer.

1.3 Bug Reporting

If you run into a bug (issue) with the simulator, please create a post on the discussion forums in the
Programming Assignments section. Make sure to leave a detailed description of the bug. Any questions
or issues with MATLARB itself should be posted on the discussion forums in the MATLA B| section.

https://class.coursera.org/conrob-002/wiki/ProgrammingAssignments
https://class.coursera.org/conrob-002/wiki/ProgrammingAssignments
https://class.coursera.org/conrob-002/forum/list?forum_id=3
https://class.coursera.org/conrob-002/forum/list?forum_id=3

YR T Y
(a) Simulated QuickBot (b) Actual QuickBot

Figure 1: The QuickBot mobile robot in and outside of the simulator.

2 Mobile Robot

The mobile robot you will be working with in the programming exercises is the QuickBot. The QuickBot
is equipped with five infrared (IR) range sensors, of which three are located in the front and two are
located on its sides. The QuickBot has a two-wheel differential drive system (two wheels, two motors)
with a wheel encoder for each wheel. It is powered by two 4x AA battery packs on top and can be
controlled via software on its embedded Linux computer, the BeagleBone Black. You can build the
QuickBot yourself by following the hardware lectures in this course.

Figure [2] shows the simulated and actual QuickBot mobile robot. The robot simulator recreates the
QuickBot as faithfully as possible. For example, the range, output, and field of view of the simulated
IR range sensors match the specifications in the datasheet for the actual Sharp GP2D120XJ00F infrared
proximity sensors on the QuickBot.

2.1 IR Range Sensors

You will have access to the array of five IR sensors that encompass the QuickBot. The orientation (relative
to the body of the QuickBot, as shown in ﬁgure of IR sensors 1 through 5 is 90°,45°,0°, —45°, —90°,
respectively.l R range sensors are effective in the range 0.04 m to 0.3 m only. However, the IR sensors
return raw values in the range of [0.4,2.75]V instead of the measured distances. Figure [2a] demonstrates
the function that maps these sensors values to distances. To complicate matters slightly, the BeagleBone
Black digitizes the analog output voltage using a voltage divider and a 12-bit, 1.8V analog-to-digital
converter (ADC). Figure is a look-up table to demonstrate the relationship between the ADC output,
the analog voltage from the IR proximity sensor, and the approximate distance that corresponds to this
voltage.

Any controller can access the IR array through the robot object that is passed into its execute
function. For example,

ir_distances = robot.get_ir_distances();

for i=1:numel(robot.ir_array)
fprintf (IR #Jd has a value of Jd’, i, robot.ir_array(i).get_range());
fprintf (Cor %0.3f meters.\n’, ir_distances(i));

end

It is assumed that the function get_ir_distances properly converts from the ADC output to an
analog output voltage, and then from the analog output voltage to a distance in meters. The conversion
from ADC output to analog output voltage is simply,

Distance (m) | Voltage (V) ADC Out
usl 0.04 2.750 917
0.05 2.350 783
0.06 2.050 683
2k : 1 0.07 1.750 583
0.08 1.550 517
%157 0.09 1.400 467
‘;:‘;’ 0.10 1.275 425
0.12 1.075 358
1k 1 0.14 0.925 308
0.16 0.805 268
ol 0.18 0.725 242
0.20 0.650 217
0.25 0.500 167
% 0.65 o‘.1 0.‘;5‘ (0;2 0.‘25 o‘.3 0.35 0.30 0.400 133
(a) Analog voltage output when an object is be- (b) A look-up table for interpolating a distance (m)
tween 0.04m and 0.3m in the IR proximity sensor’s from the analog (and digital) output voltages.

field of view.

Figure 2: A graph and a table illustrating the relationship between the distance of an object within the
field of view of an infrared proximity sensor and the analog (and digital) ouptut voltage of the sensor.

3

Converting from the the analog output voltage to a distance is a little bit more complicated, because
a) the relationships between analog output voltage and distance is not linear, and b) the look-up table
provides a coarse sample of points on the curve in Figure MATLAB has a polyfit function to fit
a curve to the values in the look-up table, and a polyval function to interpolate a point on that fitted
curve. The combination of the these two functions can be use to approximate a distance based on the
analog output voltage. For more information, see Section |4.2

It is important to note that the IR proximity sensor on the actual QuickBot will be influenced
by ambient lighting and other sources of interference. For example, under different ambient lighting
conditions, the same analog output voltage may correspond to different distances of an object from the
IR proximity sensor. This effect of ambient lighting (and other sources of noise) is not modelled in the
simulator, but will be apparent on the actual hardware.

1000 - Vanalo
Vapc = {1 g-‘

2.2 Differential Wheel Drive

Since the QuickBot has a differential wheel drive (i.e., is not a unicyle), it has to be controlled by specifying
the angular velocities of the right and left wheel (v, v;), instead of the linear and angular velocities of
a unicycle (v,w). These velocities are computed by a transformation from (v,w) to (v, ve). Recall that
the dynamics of the unicycle are defined as,

i = wvcos(0)
y = vsin(6) (1)

0 =w.

The dynamics of the differential drive are defined as,

&= E(vr + vg)cos(6)

2
5= 5 (v +v)sin(6) 2
6= %(vr — vy),

where R is the radius of the wheels and L is the distance between the wheels.
The speed of the QuickBot can be set in the following way assuming that the uni_to_diff function
has been implemented, which transforms (v,w) to (v, vy):

v =0.15; % m/s

w = pi/4; % rad/s

% Transform from v,w to v_r,v_1l and set the speed of the robot
[vel_r, vel_1] = obj.robot.dynamics.uni_to_diff (robot,v,w);
obj.robot.set_speeds(vel_r, vel_1l);

The maximum angular wheel velocity for the QuickBot is approximately 80 RPM or 8.37 rad/s.
It is important to note that if the QuickBot is controlled ot move at maximum linear velocity, it is
not possible to achieve any angular velocity, because the angular velocity of the wheel will have been
maximized. Therefore, there exists a tradeoff between the linear and angular velocity of the QuickBot:
the faster the robot should turn, the slower it has to move forward.

2.3 Wheel Encoders

Each of the wheels is outfitted with a wheel encoder that increments or decrements a tick counter
depending on whether the wheel is moving forward or backwards, respectively. Wheel encoders may be
used to infer the relative pose of the robot. This inference is called odometry. The relevant information
needed for odometry is the radius of the wheel (32.5mm), the distance between the wheels (99.25mm),
and the number of ticks per revolution of the wheel (16 ticks/rev). For example,

R = robot.wheel_radius; % radius of the wheel
L robot.wheel_base_length; % distance between the wheels
tpr = robot.encoders(l).ticks_per_rev; % ticks per revolution for the right wheel

fprintf (’The right wheel has a tick count of %d\n’, robot.encoders(l).state);
fprintf (°’The left wheel has a tick count of %d\n’, robot.encoders(2).state);

For more information about odometry, see Section

3 Simulator

Start the simulator with the launch command in MATLAB from the command window. It is important
that this command is executed inside the unzipped folder (but not inside any of its subdirectories).

sim.Lam .

Sim.I.am: Programming Assignment Submission .

Remember to use your
submission login and
password!

Login: | I ‘

Password: ‘

— Assignment parts:

Running the simulator

[IREC
&

ﬂ : ‘ﬂ ‘ ‘ﬂﬂ‘ Submit to Coursera for Grading J
(a) Simulator (b) Submission screen

Figure 3: launch starts the simulator, while submit brings up the submission tool.

Figure is a screenshot of the graphical user interface (GUI) of the simulator. The GUI can be
controlled by the bottom row of buttons. The first button is the Home button and returns you to the
home screen. The second button is the Rewind button and resets the simulation. The third button is the
Play button, which can be used to play and pause the simulation. The set of Zoom buttons or the mouse
scroll wheel allows you to zoom in and out to get a better view of the simulation. Clicking, holding, and
moving the mouse allows you to pan around the environment. You can click on a robot to follow it as it
moves through the environment.

Figure [3b| is a screenshot of the submission screen. Each assignment can be submitted to Coursera
for automatic grading and feedback. Start the submission tool by typing submit into the MATLAB
command window. Use your login and password from the Assignments| page. Your Coursera login and
password will not work. Select which parts of the assignments in the list you would like to submit, then
click Submit to Coursera for Grading. You will receive feedback, either a green checkmark for pass, or
a red checkmark for fail. If you receive a red checkmark, check the MATLAB command window for a
helpful message.

https://class.coursera.org/conrob-002/assignment/list

4 Programming Assignments

The following sections serve as a tutorial for getting through the simulator portions of the programming
exercises. Places where you need to either edit or add code is marked off by a set of comments. For
example,

%% START CODE BLOCK %%
[edit or add code here]
%% END CODE BLOCK %%

To start the simulator with the launch command from the command window, it is important that
this command is executed inside the unzipped folder (but not inside any of its subdirectories).

4.1 Week 1

This week’s exercises will help you learn about MATLAB and robot simulator:

1. Since the assignments in this course involve programming in MATLAB, you should familiarize
yourself with MATLAB (both the environment and the language). Review the resources posted in
the ”Getting Started with MATLAB” section on the Programming Assignments page.

2. Familiarize yourself with the simulator by reading this manual and downloading the robot simulator
posted on the |[Programming Assignments| section on the Coursera page.

4.2 Week 2

Start by downloading the robot simulator for this week from the Week 2 programming assignment. Before
you can design and test controllers in the simulator, you will need to implement three components of the
simulator:

1. Implement the transformation from unicycle dynamics to differential drive dynamics, i.e. convert
from (v,w) to the right and left angular wheel speeds (v,,v;).

In the simulator, (v,w) corresponds to the variables v and w, while (v,,v;) correspond to the
variables vel r and vel_1. The function used by the controllers to convert from unicycle dynamics
to differential drive dynamics is located in +simiam/+robot/+dynamics/DifferentialDrive.m.
The function is named uni_to_diff, and inside of this function you will need to define vel_r (v,)
and vel 1 (v;) in terms of v, w, R, and L. R is the radius of a wheel, and L is the distance separating
the two wheels. Make sure to refer to Section [2.2] on “Differential Wheel Drive” for the dynamics.

2. Implement odometry for the robot, such that as the robot moves around, its pose (z,y,0) is esti-
mated based on how far each of the wheels have turned. Assume that the robot starts at (0,0,0).

The tutorial located at |www.orcboard.org/wiki/images/1/1c/0dometryTutorial.pdf|covers how
odometry is computed. The general idea behind odometry is to use wheel encoders to measure the
distance the wheels have turned over a small period of time, and use this information to approximate
the change in pose of the robot.

The pose of the robot is composed of its position (z,y) and its orientation 6 on a 2 dimensional
plane (note: the video lecture may refer to robot’s orientation as ¢). The currently estimated
pose is stored in the variable state_estimate, which bundles x (z), y (y), and theta (#). The
robot updates the estimate of its pose by calling the update_odometry function, which is located
in +simiam/+controller/+quickbot/QBSupervisor.m. This function is called every dt seconds,
where dt is 0.033s (or a little more if the simulation is running slower).

https://class.coursera.org/conrob-002/wiki/ProgrammingAssignments
https://class.coursera.org/conrob-002/wiki/ProgrammingAssignments
https://class.coursera.org/conrob-002/assignment/view?assignment_id=5
www.orcboard.org/wiki/images/1/1c/OdometryTutorial.pdf

% Get wheel encoder ticks from the robot
right_ticks = obj.robot.encoders(l).ticks;
left_ticks = obj.robot.encoders(2).ticks;

% Recall the wheel encoder ticks from the last estimate
prev_right_ticks = obj.prev_ticks.right;
prev_left_ticks = obj.prev_ticks.left;

% Previous estimate
[x, y, theta]l] = obj.state_estimate.unpack();

% Compute odometry here

R = obj.robot.wheel_radius;

L = obj.robot.wheel_base_length;

m_per_tick = (2xpix*R)/obj.robot.encoders(1l).ticks_per_rev;

The above code is already provided so that you have all of the information needed to estimate the
change in pose of the robot. right_ticks and left_ticks are the accumulated wheel encoder ticks
of the right and left wheel. prev_right_ticks and prev_left_ticks are the wheel encoder ticks
of the right and left wheel saved during the last call to update_odometry. R is the radius of each
wheel, and L is the distance separating the two wheels. m_per_tick is a constant that tells you
how many meters a wheel covers with each tick of the wheel encoder. So, if you were to multiply
m_per_tick by (right_ticks-prev_right_ticks), you would get the distance travelled by the right
wheel since the last estimate.

Once you have computed the change in (z,y,6) (let us denote the changes as x_dt, y_dt, and
theta_dt) , you need to update the estimate of the pose:

theta_new = theta + theta_d;
Xx_new = x + x_dt;

y_new =y + y_dt;

. Read the "IR Range Sensors” section in the manual and take note of the table in Figure [2b, which
maps distances (in meters) to raw IR values. Implement code that converts raw IR values to
distances (in meters).

To retrieve the distances (in meters) measured by the IR proximity sensor, you will need to imple-
ment a conversion from the raw IR values to distances in the get_ir_distances function located
in +simiam/+robot/Quickbot.m.

function ir_distances = get_ir_distances(obj)
ir_array_values = obj.ir_array.get_range();
ir_voltages = ir_array_values;
coeff = [];
ir_distances = polyval(coeff, ir_voltages);
end

The variable ir_array_values is an array of the IR raw values. Divide this array by 500 to compute
the ir_voltages array. The coeff should be the coefficients returned by

coeff = polyfit(ir_voltages_from_table, ir_distances_from_table, 5);
where the first input argument is an array of IR voltages from the table in Figure[2bland the second

argument is an array of the corresponding distances from the table in Figure The third argument
specifies that we will use a fifth-order polynomial to fit to the data. Instead of running this fit every

time, execute the polyfit once in the MATLAB command line, and enter them manually on the
third line, i.e. coeff = [... 1;. If the coefficients are properly computed, then the last line
will use polyval to convert from IR voltages to distances using a fifth-order polynomial using the
coefficients in coeff.

How to test it all

To test your code, the simulator will is set to run a single P-regulator that will steer the robot to a partic-
ular angle (denoted 8 or, in code, theta_d). This P-regulator is implemented in +simiam/+controller/
GoToAngle.m. If you want to change the linear velocity of the robot, or the angle to which it steers, edit
the following two lines in +simiam/+controller/+quickbot/QBSupervisor.m

obj.theta_d = pi/4;
obj.v = 0.1; %m/s

1. To test the transformation from unicycle to differential drive, first set obj.theta_d=0. The robot
should drive straight forward. Now, set obj.theta d to positive or negative . If positive, the robot
should start off by turning to its left, if negative it should start off by turning to its right. Note:
If you haven’t implemented odometry yet, the robot will just keep on turning in that direction.

2. To test the odometry, first make sure that the transformation from unicycle to differential drive
works correctly. If so, set obj.theta_d to some value, for example 7, and the robot’s P-regulator
should steer the robot to that angle. You may also want to uncomment the fprintf statement in
the update_odometry function to print out the current estimate position to see if it make sense.

Remember, the robot starts at (z,y,60) = (0,0,0).

3. To test the IR raw to distances conversion, edit +simiam/+controller/GoToAngle.m and uncom-
ment the following section:

% for i=1:numel(ir_distances)
% fprintf (IR %d: %0.3fm\n’, i, ir_distances(i));
% end

This for loop will print out the IR distances. If there are no obstacles (for example, walls) around
the robot, these values should be close (if not equal to) 0.3m. Once the robot gets within range of
a wall, these values should decrease for some of the IR sensors (depending on which ones can sense
the obstacle). Note: The robot will eventually collide with the wall, because we have not designed
an obstacle avoidance controller yet!

4.3 Week 3

Start by downloading the new robot simulator for this week from the Week 3 programming assignment.
This week you will be implementing the different parts of a PID regulator that steers the robot successfully
to some goal location. This is known as the go-to-goal behavior:

1. Calculate the heading (angle), 6,, to the goal location (z4,y,). Let u be the vector from the robot
located at (x,y) to the goal located at (x4, yq), then 0 is the angle u makes with the z-axis (positive
6, is in the counterclockwise direction).

All parts of the PID regulator will be implemented in the file +simiam/+controller/GoToGoal .m.
Take note that each of the three parts is commented to help you figure out where to code each part.
The vector u can be expressed in terms of its z-component, u,, and its y-component, u,. u, should
be assigned to u_x and u, to u-y in the code. Use these two components and the atan2 function to
compute the angle to the goal, 6, (theta_g in the code).

2. Calculate the error between 6, and the current heading of the robot, 6.

The error e_k should represent the error between the heading to the goal theta_g and the current
heading of the robot theta. Make sure to use atan2 and/or other functions to keep the error
between [—, 7].

3. Calculate the proportional, integral, and derivative terms for the PID regulator that steers the
robot to the goal.

As before, the robot will drive at a constant linear velocity v, but it is up to the PID regulator to
steer the robot to the goal, i.e compute the correct angular velocity w. The PID regulator needs
three parts implemented:

(i) The first part is the proportional term e_P. It is simply the current error e k. e_P is multiplied
by the proportional gain obj.Kp when computing w.

(ii) The second part is the integral term e_I. The integral needs to be approximated in discrete
time using the total accumulated error obj.E_k, the current error e_k, and the time step dt.
e_I is multiplied by the integral gain obj.Ki when computing w, and is also saved as obj.E_k
for the next time step.

(iii) The third part is the derivative term e_D. The derivative needs to be approximated in discrete
time using the current error e_k, the previous error obj.e_k_1, and the the time step dt. e D
is multiplied by the derivative gain obj.Kd when computing w, and the current error e k is
saved as the previous error obj.e_k_1 for the next time step.

Now, you need to tune your PID gains to get a fast settle time (# matches 6, within 10% in three
seconds or less) and there should be little overshoot (maximum 6 should not increase beyond 10%
of the reference value 6,). What you don’t want to see are the following two graphs when the robot
tries to reach goal location (z4,y,) = (0, —1):

Eile Edit Wew Insert Tools Desktop Window Help ~ File Edit Wiew Insert Tools Desktop Window Help kS

LMD E A

A== O %% D W ol -

S|0E| e SIS

2|0E|em

o i
0zl
-04 | sk
-0

-0.8

-z I I I L L L I 25

(a) Overshoot (b) Undershoot (slow settle time)
Figure 4: PID gains were picked poorly, which lead to overshoot and poor settling times.

Figure [db] demonstrates undershoot, which could be fixed by increasing the proportional gain or
adding some integral gain for better tracking. Picking better gains leads to the graph in Figure

4. Ensure that the robot steers with an angular velocity w, even if the combination of v and w exceeds
the maximum angular velocity of the robot’s motors.

This week we’ll tackle the first of two limitations of the motors on the QuickBot. The first limitation
is that the robot’s motors have a maximum angular velocity, and the second limitation is that the

10

Eile Edit View |nsert Tools Desktop Window Help k]

NEde | AL DEL- 2|08 | aD

1]

ozl

04t

-0.6

-0

Figure 5: Faster settle time and good tracking with little overshoot.

motors stall at low speeds. We will discuss the latter limitation in a later week and focus our
attention on the first limitation. Suppose that we pick a linear velocity v that requires the motors
to spin at 90% power. Then, we want to change w from 0 to some value that requires 20% more
power from the right motor, and 20% less power from the left motor. This is not an issue for the
left motor, but the right motor cannot turn at a capacity greater than 100%. The results is that
the robot cannot turn with the w specified by our controller.

Since our PID controllers focus more on steering than on controlling the linear velocity, we want to
prioritize w over v in situations, where we cannot satisfy w with the motors. In fact, we will simply
reduce v until we have sufficient headroom to achieve w with the robot. The function ensure_w in
+simiam/+controller/+supervisor/QBSupervisor.m is designed ensure that w is achieved even
if the original combination of v and w exceeds the maximum v, and v;.

Complete ensure_w. Suppose v, 4 and v; 4 are the angular wheel velocities needed to achieve w.
Then vel_rl max is max(v, q,v;,q) and vel_rl min is min(v, 4, v7,4). A motor’s maximum forward
angular velocity is obj.robot.max_vel (or velyay). So, for example, the equation that represents
the if/else statement for the right motors is:

Up,d — (max(vy 4, v1,q) — vVelmax) if max(vyq,v;,d) > velmax
Up = 4§ Up g — (Min(vy g, v,q4) + Velmax) if min(vy g, v;,4) < —velmax

Vr d, otherwise,

which defines the appropriate v, (or vel_r) needed to achieve w. This equation also applies to
computing a new v;. The results of ensures_w is that if v and w are so large that v, and/or v,
exceed velyax, then v is scaled back to ensure w is achieved (Note: w is precapped at the beginnging
of ensure_w to the maximum w possible if the robot is stationary).

How to test it all

To test your code, the simulator is set up to use the PID regulator in GoToGoal.m to drive the robot to
a goal location and stop. If you want to change the linear velocity of the robot, the goal location, or the
distance from the goal the robot will stop, then edit the following three lines in +simiam/+controller/
+quickbot/QBSupervisor.m.

obj.goal = [-1,1];

11

obj.v = 0.2;
obj.d_stop = 0.05;

Make sure the goal is located inside the walls, i.e. the x and y coordinates of the goal should be in the
range [—1,1]. Otherwise the robot will crash into a wall on its way to the goal!

1. To test the heading to the goal, set the goal location to obj.goal = [1,1]. theta_g should be
approximately 7 ~ 0.785 initially, and as the robot moves forward (since v = 0.1 and w = 0)
theta_g should increase. Check it using a fprintf statment or the plot that pops up. theta_g
corresponds to the red dashed line (i.e., it is the reference signal for the PID regulator).

2. Test this part with the implementation of the third part.

3. To test the third part, run the simulator and check if the robot drives to the goal location and
stops. In the plot, the blue solid line (theta) should match up with the red dashed line (theta_g).
You may also use fprintf statements to verify that the robot stops within obj.d_stop meters of
the goal location.

4. To test the fourth part, set obj.v=10. Then add the following two lines of code after the call to
ensure_w in the execute function of QBSupervisor.m.

[v_limited, w_limited] = obj.robot.dynamics.diff_to_uni(vel_r, vel_l);
fprintf (’ (v,w) = (%0.3£,%0.3f), (v_limited,w_limited) = (%0.3f, %0.3f)\n’,
outputs.v, outputs.w, v_limited, w_limited);

If W # Wiimited, then w is not ensured by ensure_w. This function should scale back v, such that it
is possible for the robot to turn with the w output by the controller (unless |w| > 5.48 rad/s).

How to migrate your solutions from last week.

Here are a few pointers to help you migrate your own solutions from last week to this week’s simulator
code. You only need to pay attention to this section if you want to use your own solutions, otherwise you
can use what is provided for this week and skip this section.

1. You may overwrite +simiam/+robot/+dynamics/DifferentialDrive.m with your own version
from last week.

2. You should not overwrite +simiam/+robot/QuickBot.m with your own version from last week!
Many changes were made to this file for this week.

3. You should not overwrite +simiam/+controller/+quickbot/QBSupervisor.m! However, to use
your own solution to the odometry, you can replace the provided update_odometry function in
K3Supervisor.m with your own version from last week.

12

	Introduction
	Installation
	Requirements
	Bug Reporting

	Mobile Robot
	IR Range Sensors
	Differential Wheel Drive
	Wheel Encoders

	Simulator
	Programming Assignments
	Week 1
	Week 2
	Week 3

