

利用基于模型的方法和云原生开发实现 软件定义汽车

叶江荣, 亚马逊云科技

2024 MathWorks 中国汽车年会

Key Challenge

HYPERSCALE		AGILITY & SPEED	S COST		SAFETY	
Thousands of cores of compute for development and validation. TBs of data to collect, ingest and store every day translates into PB scale data processing, storage and management problem.	Optin to rec valida faste proof and A	nized software engineering duce development and ation costs and enable r Time to Market. Future R&D cycles. Integrated Agile to rapidly innovate.	PB scale data storage and large scale compute costs, managing fleet operations, significant capex of on-prem compute, lack of AV expertise requires significant human investment.		Safety of passengers and surroundings are top of mind of Amazon Web Service, customers and vehicle end users. Decisions are moving from human to vehicle.	
ECOSYSTEM PLAY	nteroperabi ntegration o hird party w	lity and seamless of multiple first party and orkload specific tools.	E/E COMPLEXITY	Modern vehicles have several tens of Electronic Control Units, making the system hard to test and update.		
GLOBAL, SECU DATA PRIVACY	RITY,	Global fleet requires managed service for complex operations, attain data and security compliance across the globe.				

SDV is a *vehicle* whose **functions** can be **updated**, **secured**, and **personalized** throughout its lifetime.

The insights generated from SDV improve current and future generation of vehicles.

Automotive Development "Infinity" Workflow

Environmental Parity: Level and Personas

Developer Persona		Environmental Parity		Example Usage		Enabled By
Application	Current SOCs	ISA Parity		Improved DX enabling fast dev feedback/ SIL running same binary in cloud/edge	→	Arm-based cloud instance & Arm-based Automotive Edge
Developers	Future SOCs	CPU Architecture Parity		Software dev/test using extended Arm architecture features (e.g. Algo dev)	→	Arm CPU Models
Platform Developers		SoC Parity		Software dev/test needing SoC base features and/IO access (e.g. BSP, etc.)		Arm SystemReady Compliant SoC Models and Devices
System Developers		System Parity	→	System dev, integration, verification and validation incl. FuSA, Realtime	→	Digital Twins

Environmental Parity with Amazon Web Service and ARM

Parity Levels Use Cases

< 亚马逊云

Digital Chassis

Model-Based Design Workflow

Model-based & Cloud-Native Design Workflow

SDV Development in Action – Demo Vision

Infotainment

System (IVI)

QM

Vehicle Control Batterv Management Unit (HPC) Embedded Edge ASIL-B ASIL-D

SDV Development in Action – Demo Vision

SDV Development in Action – Simulink Workflow

Integrate VCU and BMS into Virtual Vehicle Model

Analysis of Cloud based Simulation Data

SDV Development in Action – Cloud Deployment

SDV Development in Action – end to end demo

CITM Amazon Graviton

Engineering Workbench	Cloud-Native Tool Collaborations	Virtualized Targets			
References	MathWorks [®] Qt Group	STATES AUTOMETIVE			
©ntinental ^s TOYOTA	Synopsys° dspace	Onfinenfal 🖲 👟 Red Hat			
STELLANTIS	CORELLIUM VECTOR	Panasonic QUALCOMM®			
Partners	RIGHTWARE Genymotion	Ubuntu VxWorks			
KPIT GlobalLogic [®]	etas EB	BlackBerry, QNX.			
Continental					

16

MathWorks AUTOMOTIVE CONFERENCE 2024

OEM creates and maintains "native" OEM AMIs

OEM developers can start to develop native applications on Amazon Web Service

OEM distributes the OEM AMI to its ecosystem of partners

 Using the native OEM AMI, partners can *develop* and *test* containerized applications and services

5 The partner submits the container back to OEM

OEM validates the containerized app/service

The containers are deployed in production vehicles

Summary

- SDV is happening, and requires a deep transformation of the tools and workflows in automotive
- Model-Based is a first layer of abstraction perfect to design SDV systems!

Thanks to the collaboration with MathWorks, we can provide our customer with even more powerful and "SDV"-aligned Model-Based tools, properly architected, and

leveraging cloud-native practices.

• Virtual targets and workbench would accelerate the SDV journey.

2024 MathWorks 中国汽车年会

Thank you

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.