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| Application Benefits of Embedded Al

A~/ — Enables more accurate control approaches which leads to higher
energy efficiency especially in the Electric Drive Train

O
-
—

.
o /\[ﬂ] — Enables higher dependability by the use of virtual sensors
O
Embedded
Al
o |:|/\[I7i:| — Reduces the bill of material for the entire system
®

I

Reduces the system and software development effort



| Al Enhanced vehicle motion with AURIX™ TC4
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" Al Enhanced vehicle motion with AURIX™ TC4x is driving a
test vehicle
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Data environment and localization Maneuver Bt Trajectory trajectories Values
: : : I Al to complement and enhance Trajectory Planning and Control
Al in perception and scene understanding already common!

is the step to improve driving comfort and energy efficiency

Al enhanced Trajectory Control (TC)
increased the tracking accuracy by 50%
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Trajectory Planning (TP) with Al enhanced Model
Predictive Control (MPC) increases the energy
efficiency for an ACC by up to 10%
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How to integrate Al workflow for AURIX™ TC4x software
development?
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Al Development flow using different frameworks
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Deep Learning Toolbox — Model design and training

Build-in Layers & Custom Layers

Custom Function
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fullyConnected. ..
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classoutput

classificationLa...

classdef prelulayer ¢ nnet.layer.layer ...

& nnet.layer.Acceleratable
% Example custom PReLU layer.

properties (Learnable)
% Layer learnable paramcters

% Scaling coefficient
Alpha
end

methods
function layer = prelulayer(args)
% layer = prelulayer creates a PRelU layer.
%
% layer = prelulayer(Name=name) also specifies the
% layer name

arguments
args.Name = "
end

% Set layer name.
layer.Name = args.Name;

% Set layer description.
layer.Description = "PRelLU";
end

function layer = initialize(layer,layout)
% layer = initialize(layer,layout) initializes the layer
% learnable parameters using the specified input layout.

% Skip initialization of nonempty parameters.
if ~isempty(layer.Alpha)

return
end

% Input data size
sz = layout.Size;
ndims = numel(sz);

% Find number of channels.
idx = finddim(layout,"C");
numChannels = sz(idx);

% Initialize Alpha.
szAlpha = ones(1,ndims);
szalpha(idx) = numChannels;
layer.Alpha = rand(szAlpha);
end

function Z = predict(layer, X)

% Z = predict(layer, X) forwards the input data X through the

% layer and outputs the result Z.

Z = max(X,8) + layer.Alpha .* min(0,X);

Ref: https://ww2.mathworks.cn/help/deeplearning/build-deep-neural-networks.htmi

function [Y1,Y2,state] = model(parameters,X,doTraining,state)

% Initial operations

% Convolution - convl

weights = parameters.convl.Weights;

bias = parameters.convl.Bias;

Y = dlconv(X,weights,bias,Padding="same");

% Batch normalization, RelU - batchnorml, relul
offset = parameters.batchnorml.Offset;

scale = parameters.batchnorml.Scale;

trainedMean = state.batchnorml.TrainedMean;
trainedVariance = state.batchnorml.TrainedVariance;

if doTraining
[¥,trainedMean, trainedVariance] = batchnorm(Y,offset,scale,trainedMean,trainedVariance);

% Update state
state.batchnorml.TrainedMean = trainedMean;
state.batchnorml.TrainedVariance = trainedVariance;
else
Y = batchnorm(Y,offset,scale,trainedMean, trainedvVariance);
end

Y = relu(Y);

% Main branch operations

% Convolution - conv2

weights = parameters.conv2.Weights;

bias = parameters.conv2.Bias;

YnoSkip = dlconv(Y,weights,bias,Padding="same",Stride=2);

% Batch normalization, RelU - batchnorm2, relu2
offset = parameters.batchnorm2.0ffset;

scale = parameters.batchnorm2.Scale;

trainedMean = state.batchnorm2.TrainedMean;
trainedVariance = state.batchnorm2.TrainedVariance;
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Import external models into MATLAB workspace

Functions That Import Deep Learning Networks

External Deep Learning Platforms and Import Functions
This table describes the external deep learning platforms and model formats that the Deep Learning Toolbox functions can import.

External Deep Learning Platform Model Format Import Model as Network
TensarFlow 2 or TensorFlow-Keras SavedModel format importMetworkFromTensorF low
PyTorch Traced model file with the .pt extension importMetworkFromPyTorch
ONMNX OMNNX model format importhietworkFromONNX)

Reference: “Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch, and ONNX’,
https://ww2.mathworks.cn/help/deeplearning/ug/interoperability-between-deep-learning-toolbox-tensorflow-pytorch-and-onnx.html 7
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Using Model Based Development to develop and build
whole application for AURIX™ TC4x
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Why should we provide an ecosystem for model driven

development?

Q&g — Customers can use MATLAB/Simulink and include IFX models for
¥ simulation and Autocode generation

— Reduction of engineering effort and time to market advantage and
provides further abstraction of HW

Embedded |
Al . I A

ol - Reduction of bug rate coming from manual coding

=5 Maximization of re-use from previous SW development projects

Mathworks provides Hardware Support Package for AURIX™ TC4X since MATLAB 2022b



Manually Developed Software

Manual Implementation

Manual Implementation

Model-based Development

MATLAR 1F TensorFlow
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. ‘ Embedded
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Generated C/C++ Code
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YR

PPU Optimized Libraries

AURIXT™MTC4xx Eco-System

U

AURIXT™M TC4xx Binaries (TriCore™ & PPU

€

SIMULINK
Keras ONNX
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' Embedded Software Development Landscape for AURIX™ TC4x
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Partltlonmg of the Application using Mathworks Embedded Coder
and SoC Blockset for AURIX™ TC4x
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How to use MATLAB Extensions to develop Software for

AURIX™ TC4x ?

What is Embedded Coder ®?

— efficient C/C++ code

\ Generated Code
e — AUTOSAR, MISRAC ™
Embedded dei tab| g 5
» — code is portable and can be
Coder ® e _ P
y compiled and executed on any

processor

What is SoC Blockset ?
(5 =) \What is SoC Blockset?
@,

Blockset™ — enables simulation and analysis

of the performance of

= nfineon AURIX™™ algorithms on multicore SoC

\ HSP — assists the code generation
for the target SoC

12
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| What is TC4x Hardware Support Package (HSP)?

MATLAB/
Simulink Simulink Model

Environment HSP

ILLDs* Libraries 3

] — Plugin for Embedded Coder and
Code Generation X
SoC Blockset

— Translates Simulink models into

w1 AURIXT™™ HW executable code o

o e — Generated Code Optimized for
AURIX™TC4x

— Support for new peripherals
added successively in new

*ILLD — Infineon Low Level Drivers releases

13



MathWorks AUTOMOTIVE CONFERENCE 2024

Model-driven development is key for customer enablement

: Hardware In-the-Loop Vehicle
Software-in-the-Loop AURIX™ TC4 Integration
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Example solutions for an Al enhanced Trajectory
Controller

15
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Al-Enhanced Trajectory Controller

For now, Al-Enhancements are considered for Lateral Control and not for Longitudinal Control

Online : :
Scene & Controller Online Controller Parameter Selection

Maneuver ';aeflzf:t?;if — Use of classic controller

— Adapt controller parameterization during runtime

Controller
Parameters — Improved trajectory tracking >
@g Actuator Refined -
Planned Trajectory Values Values _ =
Trajectory Controller Correction of Actuator Values '8
— Use of classic controller &
Sensor . :
values — Let Al choose slight corrections %’_
— Improved trajectory tracking -
Physical . Virtual c:D
Observations Sensor _ @
Virtual Sensor =
Sensor — Use of available sensor measurements
Path & Correction — Infer additional information from measurements
Al-Based Offsets — Improved trajectory tracking
Planned Corrector
Trajectory

16
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Classical Controller With Al-based Online Controller
Parameter Selection

Al-Enhanced Trajectory Controller

Online
Scene & Controller

Maneuver Parameter
Selection

Scene

Neural Network

Maneuver
Controller
Parameters
Actuator Refined
Values Values .
Planned PID Controller >O—> Planned | _ N pID Controller Steering S
Trajectory Trajectory error Angle
I Vehicle
State
Learning

— Using MLP to learn mapping between scene maneuver
and optimal controller parameters (PID) for current
driving scenario contained inside ODD

Input

— Polynomial interpolation of the planned trajectory
ahead, vehicle dynamics

Qutput

— PID gains for P, l and D

Structure

— Actor NN consists of 339 parameters & 3 layers

17
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One-stop- shop solution for sw development building and target

ananan

1= enable_[dl_sleeing_contral

1= acl_exl_ssg_param

1= enable_ext_yaw_rale_param

= enable_ext_pes_ctrl_param

PID Controller
=

Pin Simulink Block
to PPU

Core2 -> PPU

=]

e 1 =

Schedule Task for

PPU
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Al-Enhanced PID Controller outperforms Baseline Controller

Performance Measures

Results Tracking Accuracy

Training Setup PPU running Neural Network
— Closed loop simulation CarMaker & MATLAB/Simulink — memory footprint ~37 KB
— Lane change scenario — right & left — Execution time 1403 cycles ~3.5 us

Test Sety i TriCore CPU running PID controller

o — Execution time 2 les ~0.
- Nirburgring track — 70 km/h | xecution time 250 cycles ~0.63 us

— Classical controller suffers in generalization

— Al-Enhanced Controller tracking acc higher by 47% — Linearized controller can be improved
introducing ML covering non-linear
behavior or enable adaptation

— Implies higher energy effiency

Test Results

Conventional PID Al-Enhanced PID

Accumulated lateral 68313.0 m 35907.0 m
deviation (CTE)

19
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Al-Enhanced PID Controller outperforms Baseline Controller

Multiscenario PID (NO Al)
|

N
&

N
|

0.5

o

crosstrack error
1

ot
(3]

1 |
jMWMW[\MWMJ N wwwmwﬁvwmf\pM«wwwww% f

0 200 400 600 800 1000 1200
Time (seconds)

Al-enhnaced PID
T

"
-

-
[

-
|

n " i
j\“‘ﬂﬂﬂw‘/ WMMVN\‘PF‘“\”W\N binh H{J M““WMMWWW'YF WAt A A MWM\JMMJ——*WN [J N

o
(3]

crosstrack error
<)
o o

'
-
\

| | |
200 400 600 800 1000 1200
Time (seconds)

N
4]
o

Conventional PID Al-Enhanced PID

Accumulated lateral 68313.0 m 35907.0 m
deviation (CTE)

20



,7 I\/IathVVork.s AUTOMOTIVE CONFERENCE 2024
Comparison of Classical Controller with Al-based Online

Parameter Selection

Classical Trajectory Controller Al-Enhanced Trajectory Controller
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Summary

— Embedded Al enables the innovation for the next generation of Automated Driving and Electric Vehicle.

— AURIX™ TC4x with its ASIL-D related Al accelerator (PPU) provides the backbone to use Embedded Al
in safety critical applications.

— MATHWORKS together with Infineon (AURIX™ HSP) offer complete ecosystem for model driven
development and close-loop validation on different abstraction levels.

— User-friendly and flexible Al model design and deployment provided by MATHWORKS speeds up
algorithm design and development.

— Embedded Al in trajectory control and planning can increase energy efficiency & dependability.

— Infineon has developed an Al enhanced trajectory control consisting out of resource aware Al models
(Neural Network) and ODD definition for training and test dataset acquisition

22
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