MathWorks AUTOMOTIVE CONFERENCE 2022 India

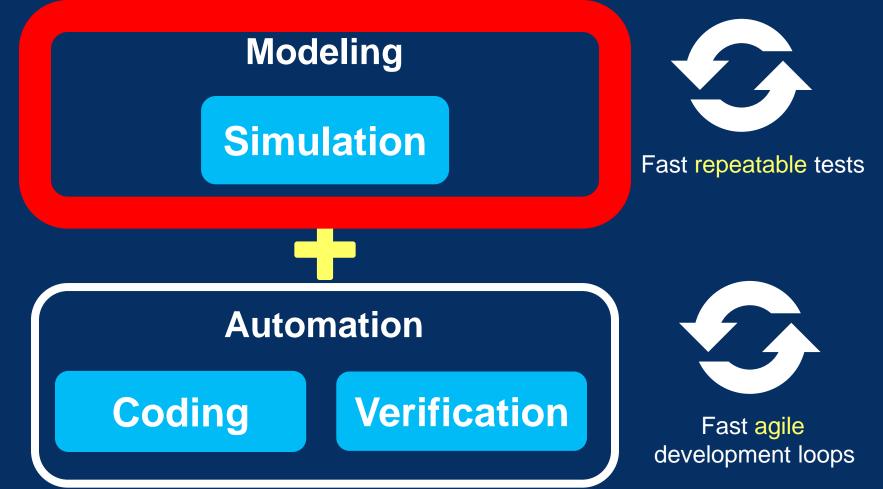
Evolution of Model-Based Design for Future Mobility

November 16 | Pune

Vijayalayan R, MathWorks

How are Megatrends transforming Automotive R&D?

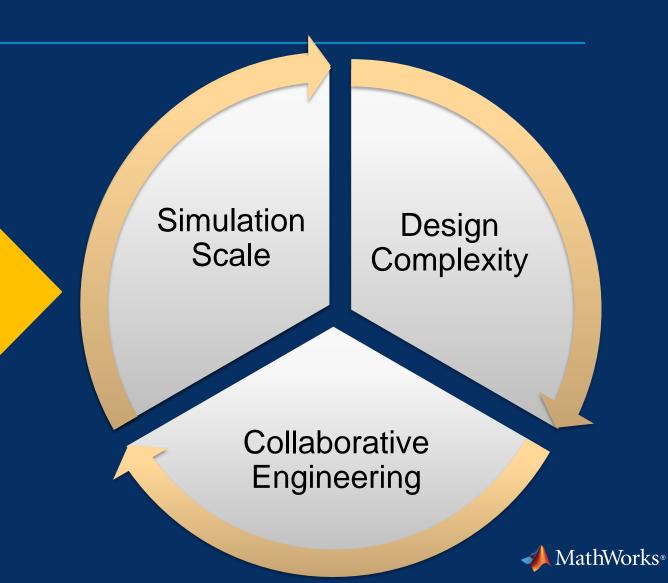
- Need for Virtual Development and Test Grounds
- Handling increasing system and software complexity
- Building innovative features and enhancing existing products
- Workforce mobility and skills



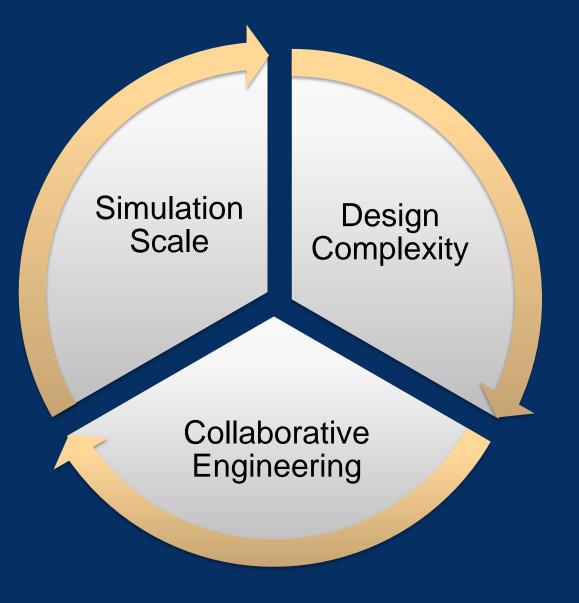
Rise of Model-Based Design

What is Model-Based Design?

Systematic use of models throughout the development process



How is Model-Based Design Evolving?



The Three Evolutionary Forces at Play

- Need for Virtual Development and Test Grounds
- Handling increasing system and software complexity
- Building innovative features and enhancing existing products
- Workforce mobility and skills

The Three Evolutionary Forces at Play

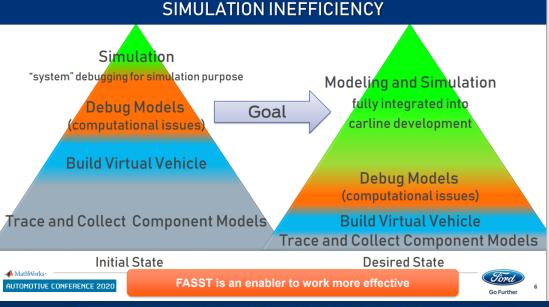
Why are these trends important?

What are customers doing today about these trends?

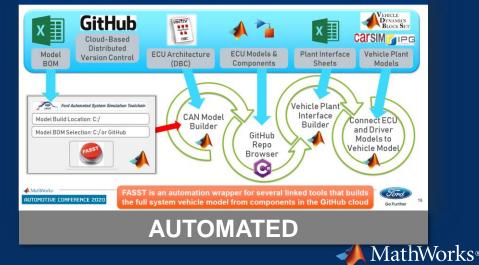
How does Model-Based Design evolve to meet the needs of future mobility?

Trend: Systems -> Full Vehicle Simulation

Full Vehicle Simulation



FORD uses an automated system simulation toolchain to build a virtual vehicle in minutes and <u>Detect System Issues Early in Development</u>


Ford & MathWorks collaborated on a standard framework Ford Automated System Simulation Toolchain (FASST) which has 500+ users today

FASST

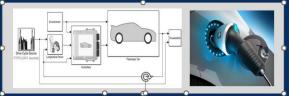
- reduced virtual vehicle build time from months to minutes
- enabled groups needing to perform different analysis tasks to build their own virtual vehicles

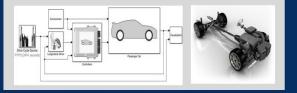
THE FASST "ONE CLICK" SYSTEM MODEL BUILD

MathWorks Vision for Virtual Vehicle

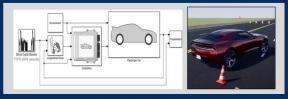
Every function designer can *create a virtual vehicle within minutes* with desired details in physics and software, and prototype, calibrate, and validate their functions in simulation

Goals


- Maximize frontloading via simulation
- Deliver rich out-of-box capabilities and openness for tailoring
- Provide world class simulation integration platform (SIP)


How is Simulink evolving?

Automotive Reference Applications


Pure EV

Hybrid Powertrain

Lane Keeping Assist

Car Vehicle Dynamics

📣 Vii	rtual Vel	hicle Co	mposer											-	×
CO	MPOSER														?
÷			్×				in	è				5			
New	÷	Save	Setup	Data ar Calibrati		Scenario and Test	Logging	Virtual Vel	nicle	Run Test Plan		ulation nspector	Defau Layou		
	FILE			C	ONFIG	URE		BUILD		OPERATE	AN	ALYZE	LAYOU	JT	Ā
Virtua	l Vehic	le			S	etup	Data and (Calibration	S	cenario and	Test	Logging			0
▼ PassengerCar															
Chassis					Chassis: Vehicle Body 3DOF Longitudinal V										
			(Fuel economy and energy management											
Tire Data			Ιl												
Brake Control Unit			P	Parameters											
▼ Powertrain															
Vehicle Control Unit				Parameter N		I Desc	Description		U	nit	Value				
✓ Engine				1 PintVehMass		s Vehic	Vehicle mass		kg		1623				
Engine Control Unit				2 P	IntVehDstC	G Long	Longitudinal distance from center		ter m		1.09				
				3 P	IntVehDstC	G Long	Longitudinal distance from center			term		17	 _		

11

More details about frontloading of vehicle development using virtual vehicles :

Cross Domain Vehicle Simulation for EV System Analysis & Development

November 16 | Pune

Lingegowda Aurobbindo **Bosch Global Software Technologies**

Panel Discussion on Virtualization: Accelerating the future of mobility

Rashmi Gopala Rao, MathWorks Moderator

Mike Sasena MathWorks US

TATA Consultancy Services

Neha Mishra Cummins India Ltd.

Anand Bhange FEV India Pvt. Ltd.

Virtual Development of Battery and BMS

Abhisek Roy, MathWorks

Validation of AUTOSAR Software via Virtual ECU using MATLAB & Simulink

November 16 | Pune


Dr. Vivek Venkobarao, Vitesco Technologies

Konstantin Alexeev, Vitesco Technologies

Trend: Simulating Environment -> Simulating Scenarios

Scenario Simulations for Autonomy

PORSCHE: ADAS/AD virtual platform for end-to-end software development, testing and validation

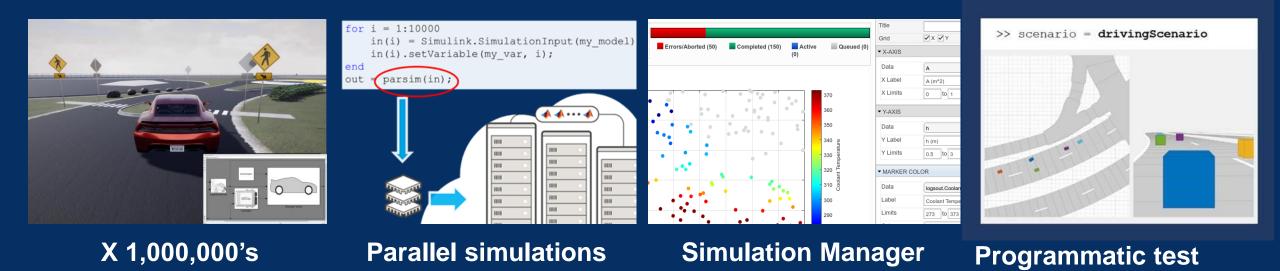
Challenge :

- Evolving classic simulation to adaptive, flexible and modular simulation platform
- HW & SW providers from diverse disciplines

Solution :

• **PEVATeC** - Flexible and Modular simulation environment for virtual ADAS/AD Testing

Results:


- customized parametrization of scene, scenarios, and sensors
- smart integration of software algorithms into a full vehicle simulation environment

14 Source: ADAS/AD Virtual Platform for End-to-End Software Development and Testing (matlabexpo.com)

How is Simulink evolving?

creation

To know more about building and scaling up simulation for AD systems, attend the below sessions:

Bringing real world to simulation for virtual testing of Automated Driving (AD)

November 16 | Pune

Ninad Pachhapurkar, ARAI

Jyoti Kale, ARAI

Environment modeling and Virtual Validation for ADAS/AD features

Munish Raj Application Engineer MathWorks India mraj@mathworks.com

Dr. Rishu Gupta Principal Application Engineer MathWorks India rishug@mathworks.com

End-to-end closed loop validation of Automated Driving (AD) systems

November 16 | Pune

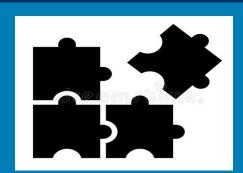
Deepika CP, KPIT Technologies

Bhagayashree Mukkawar, KPIT Technologies

Sanket S Shinde, KPIT Technologies

Chinmayi Jamadagni, KPIT Technologies

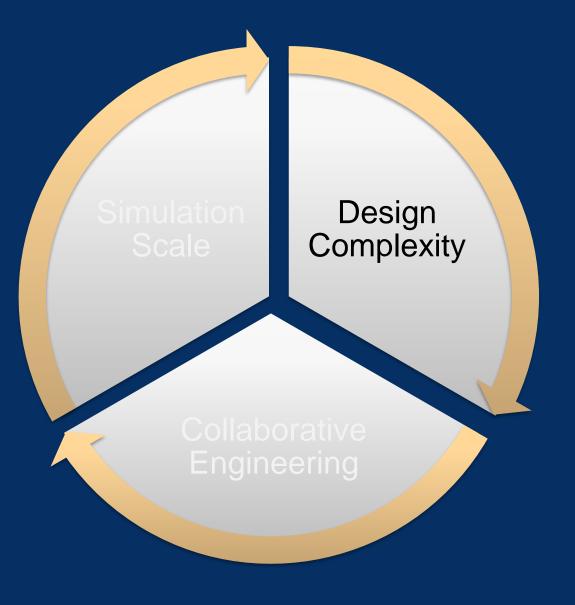
Srinivas Boppidi, KPIT Technologies


Simulink platform is evolving to meet the demands of scaled up simulations

Full Vehicle Simulation

Scenario Simulations for Autonomy

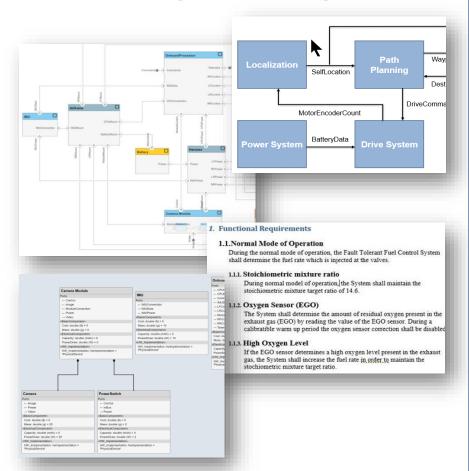
Integrating models and components


Operationalization

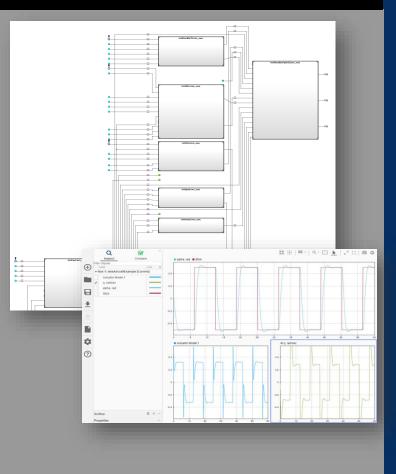
Scenario Simulation

The Three Evolutionary Forces at Play

Why are these trends important?


What are customers doing today about these trends?

How does Model-Based Design evolve to meet the needs of future mobility?



Trend : Bridging the gap between Model-Based Systems Engineering and Model-Based Design

Model-Based Systems Engineering

Model-Based Design

Delphi Technologies : AUTOSAR Architecture Modeling of Multi-core Electric Powertrain Controller for Next Generation Inverter

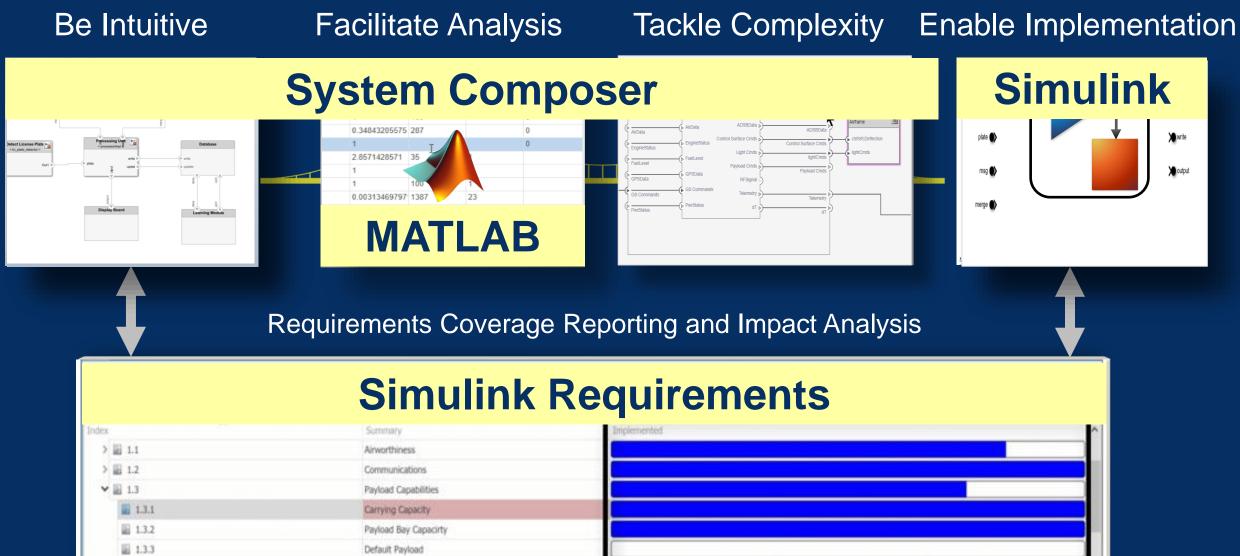
Challenge :

- Gap between architecture and design models
- Gaps in requirement traceability
- Lack of support for intuitive and performance analysis

Solution : Delphi Technologies used System Composer and AUTOSAR Blockset for AUTOSAR Based System Engineering

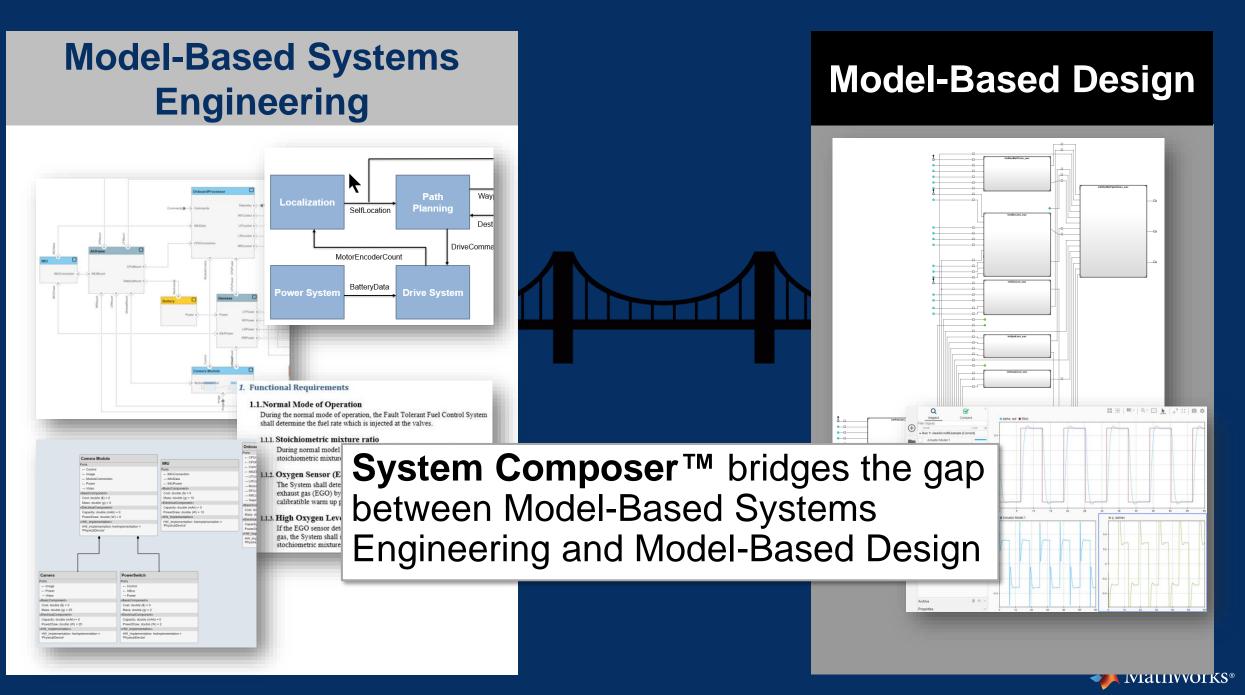
Results :

- Architecture to Requirements –Seamless Approach
- Intuitive and Performance Analysis

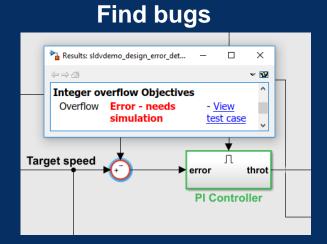

Architecture to Requirements – Seamless Approach

SafetyCore1_Applic		et - FS_L2_In_P_L_Phase_dc_current_offset		FS L2b1 Cur0	tuni 140 D	PS_L2_H_DC_SV_L	· · · · · · · · · · · · · · · · · · ·	Co
FS_L2_in_RLG_Sin1_N	F8_L2_in_Cur_1	r1⊪(► FS_L2_in_Cur_Ts1				 FS_L2_In_VREF4 FS_L2_In_CS_5V FS_L2_In_CS_5V 	Marin .	Pro
				_		F8_L2_In_15V_LV		~ •
FS_L2_h_RLG_Cos1_P	Г			_	Polarion Explore	,	Publish Block/(Sub)System Link Block/(Sub)System with Existing Ite	em
							Push/refresh Polarion attributes to Sim	
		FS L2 ASILB2			Undo Create Port Can't Redo	Ctrl+Z Ctrl+Y	Open Linked WorkItem (1)	
FS_L2_h_RLG_Cos1_N		ro_cs_Honose					Refresh Published Diagram(s)	
	FS_L2_in_Hvdc_Ts3	Transmitt Transmitter		R G		Ctrl+V		
FS_L2_In_RLG_Sin1	FS_L2_in_in)(8-4 (U.L.) (A)	Concession and the		Select All	Ctrl+A		
	FS_L2_in_ib)	B	10,000,00000,0000)-4		Remove Highlighting Fit to Content	Ctrl+Shift+H		
FS_L2_h_RLG_Ts1	FS_L2_in_P_L_Phase_s_current_offset	FS_L2_in_P_L_Phase_a_current		\$	Update Diagram	Ctrl+D		
	FS_L2_in_P_L_Phase_b_current_offset	FS_L2_in_P_L_Phase_b_curre	Particular (PP-4)		Requirements at This Level	,	dg_Count_A_Hi	
		FS_L2_In_P_L_Phase_c_orters	Number of South	F8. 🔘		rs Ctrl+E	Pa_T	
FS_L2_in_RLG_Cos1	FS_L2_In_RLG_Sin2_N				-	is corre	ALHE Bg. Count. A. Lo	
	F8_L2_h_RLG_Con2_N)	Corported 1 (2014) 1014		-	Help		dg_Time_A_Lo	
FS_L2_in_ib		FS_L2_In_RLG_Sin2_P	10,000	FS_L2b2_R	LGCalc_Omega2 ►	 FS_L2_in_Pwm_F_I FS_L2_in_Pwm_Sta 		
	FS_L2_in_Cur_Ts2	F8_L2_In_Cur_Ts2	Runcho	(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		• FS_L2_in_Pwm_R_		
	F8_L2_In_RLG_Ts2	FS_L2_h_RLG_Ts2	10,100,7	FS_L263	2_RLGQual_Fault	FS_L2_In_Pwm_R_		
FS_L2_h_RLG_Sh2_N	FS_L2_in_Hvdc2	F8_L2_In_Hvds2		F8_L262_	HvdcQual_Hvdc2 ►	 FS_L2_in_Pwm_F_I FS_L2_in_Pwm_F_I 		
<u>a</u>						FS_L2_in_Pwm_Sta		
							>	
nt links - AUTOSAR_Multi_C							# ×	
s 🔹 🖹 🖾		è 🔟 🔸 😅					Search	
Label		Source			Туре		Destination	
OSAR_Multi_Core.slmx	Changed sou					Changed destination: 0/		
olarion: AINV-58075	SafetyCore1_		Implements			http://polarionprod1.del		
Polarion: AINV-58341	BSWCore0_A	pplication	Implements			http://polarionprod1.del	phidrive.com/polarion/	

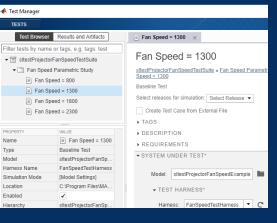
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/company/events/conferences/automotive-conference-stuttgart/2020/autosar-softwarearchitecture-modeling-of-multicore-electric-powertrain-software.pdf


How is Model-Based Design Evolving to support the needs of System Engineers?

MathWorks®


E 134

Puload Protection


How is Model-Based Design evolving to address software complexity?

Automated Test and Verification

Simulink Design Verifier Polyspace Bug Finder

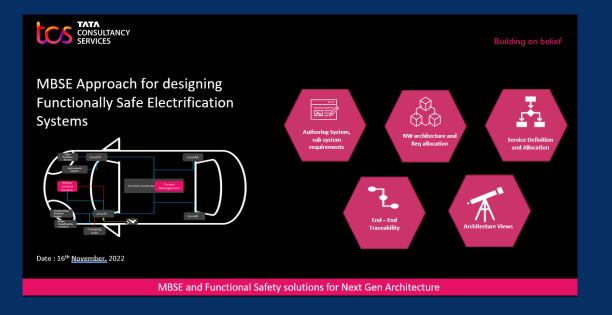
Manage tests

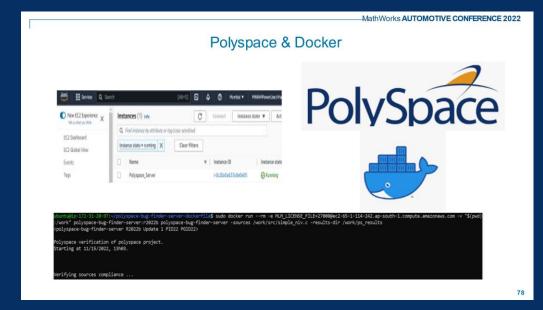
Simulink Test

Check & Coverage

A sidemo_fuelsys		SIZE				
	Revision: 1.742 A 🛕 1 Warnings	192 Blocks	1 Models 1 Files			
	E					
88.4%	74.2%	Actual Reuse Potential Reuse	0%	20%		
High Integrity	188	Model Complexity		2		
				2		

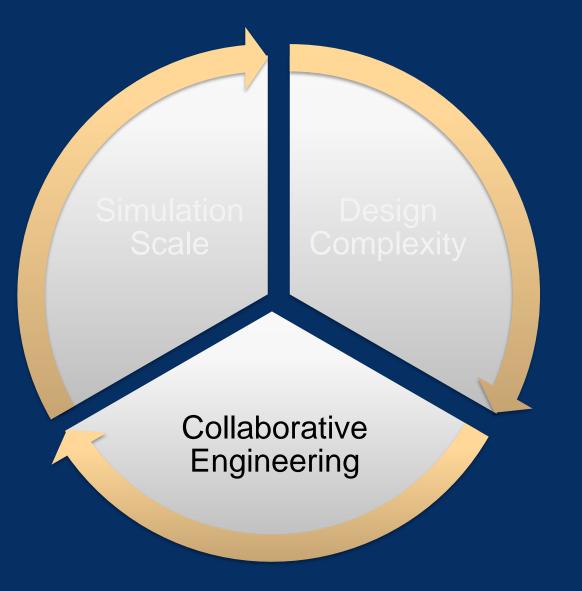
Simulink Check Simulink Coverage


Inspect code


Co	ode Ve	rification	Resu	lts : V	erified					
Fur	ction Int	erface Verific	ation Res	ults : Vo	erified					
	Function	1	Status	Details						
	slcidemo	_roll_initialize	Verified	-						
	slcidemo	_roll_step	Verified	-						
Model To Code Verification Results : Verified										
	Status	Details								
	Verified	Model objects Model objects Model objects Model objects	with stat with stat	us Partia us Unab	ally processed : le to process :	42 0 0				

Simulink Code Inspector

To know more about handling system and software complexity


Functional Safety and Cybersecurity

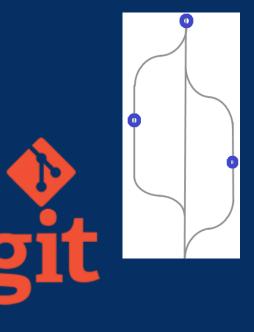
- · Early Verification and Validation Using Model-Based Design
- Efficient elimination of errors at early stages
- Continuous and uninterrupted refinement of system and software requirements and architectural designs
- Complete traceability and improved consistency among requirements, architecture, design, source code, and test cases
- Certifiable tools and workflow
- Formal Code Verification
- Adhere to coding standards: safety and security, robustness checking without testing, and compliance with ISO 26262 and ISO 21434
- Integrate at different SDLC stages, intuitive and actionable presentation of results, decrease testing efforts
- Integrate into development workflows—Model-Based Design, devOps, Dockerization—and run on cloud platforms

24

The Three Evolutionary Forces at Play

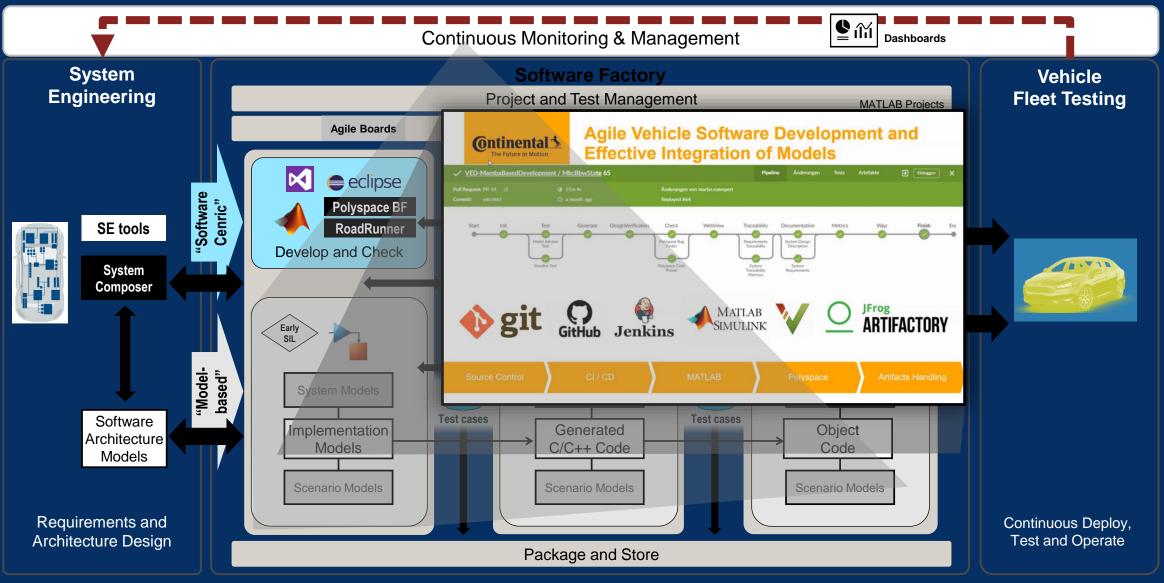
Why are these trends important?

What are customers doing today about these trends?

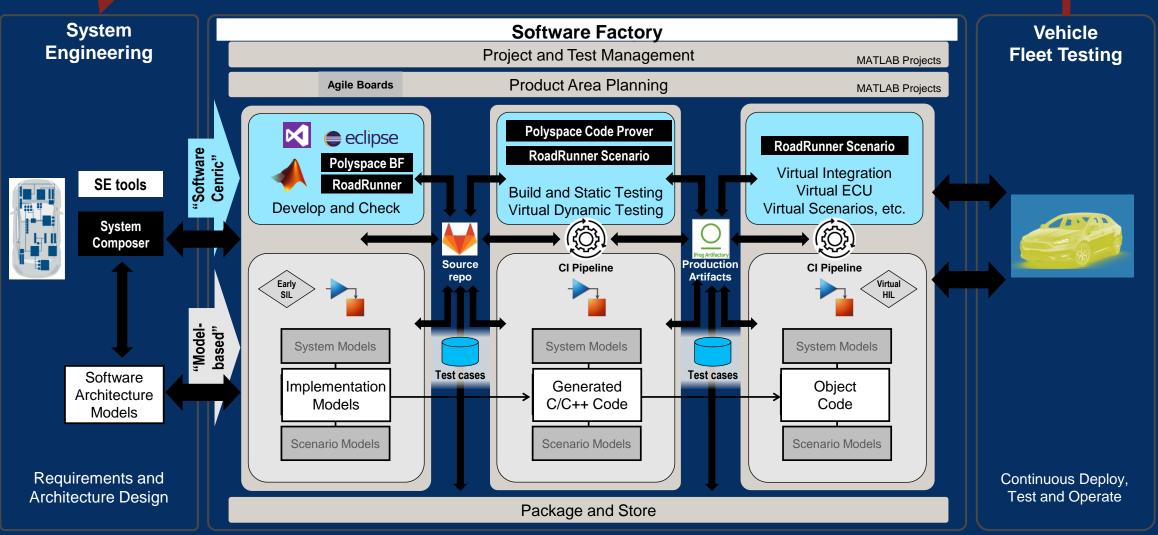

How does Model-Based Design evolve to meet the needs of future mobility?

Trend: An increased demand for Agile team-based workflows

Shared team environment


Collaboration

Continuous Integration & Test


Integrating model-based approaches in a Software Factory

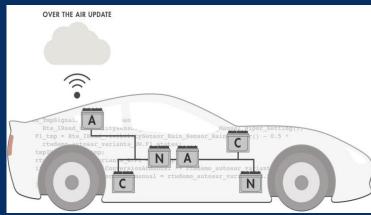
27

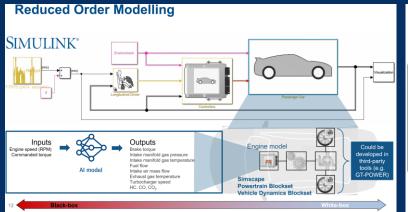
How are MathWorks tools integrating for Continuous Development?

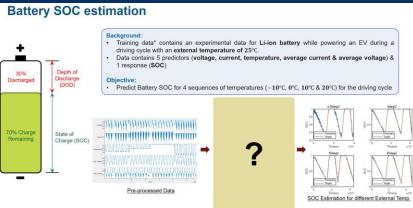
To know more :

Software-Defined Vehicles: Workflows for In-Car and Cloud Applications

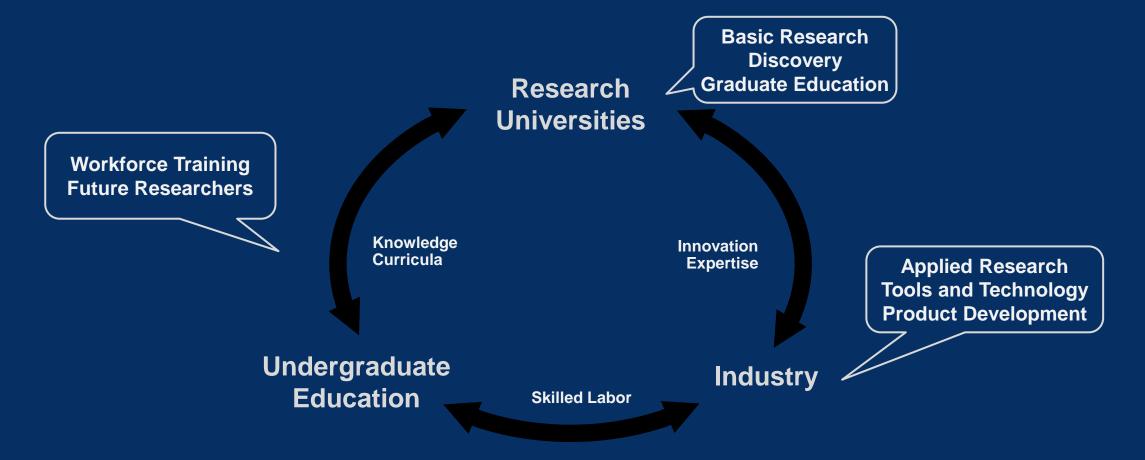
Prasanna Deshpande, MathWorks




Integrating Model-Based Design with CI/CD for agile workflows


Al Deployment on Embedded Systems and Cloud

Al in Simulation : Reduced Order Modeling



Al in Electrification : Battery SOC and SOH Estimation

Trend : Bridging Gap between Industry and Academia

Bosch and National Institute of Technology Calicut Collaborate on EV Course to Prepare Students for Industry

Challenge

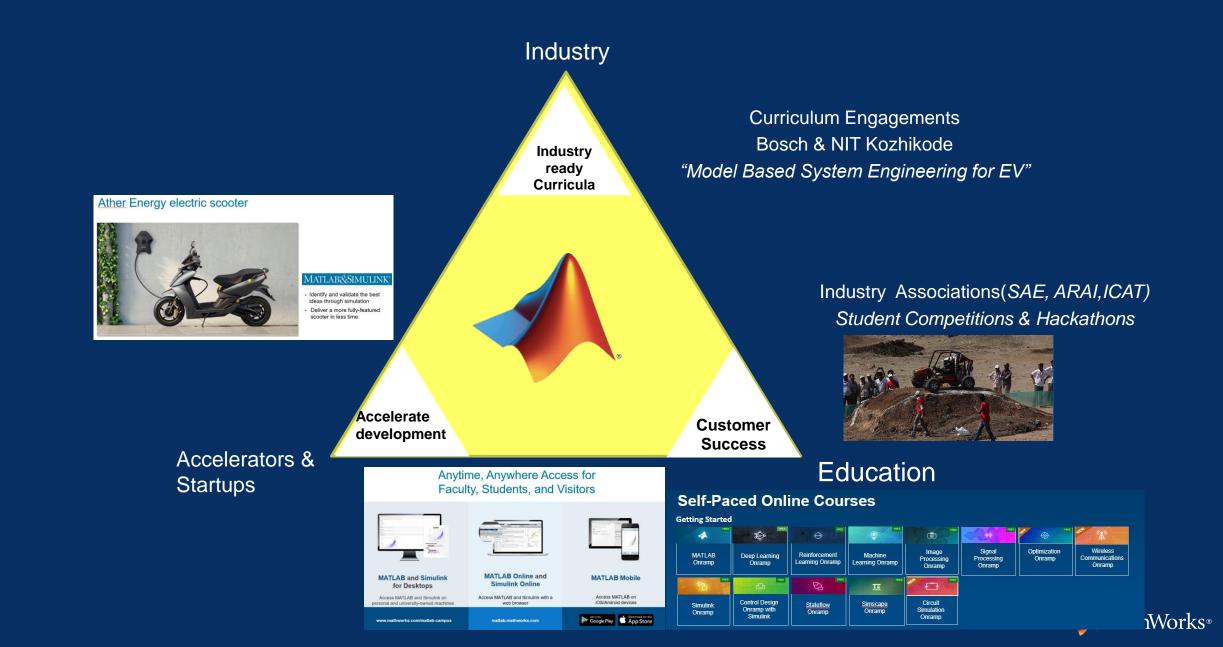
Address the shortage of automotive engineers with system engineering skills

Solution

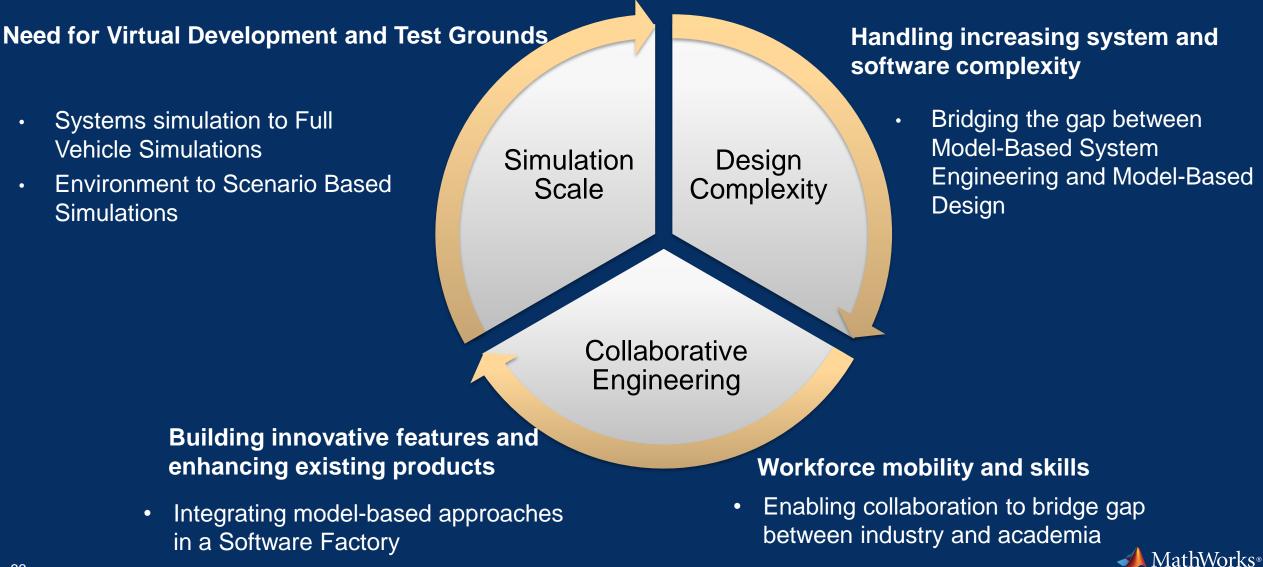
Jointly create a new undergraduate course in model-based system engineering as part of a collaboration between academia and industry

Results

- Months of on-the-job training eliminated
- Enrollment increased by 250%
- 90%+ positive feedback received

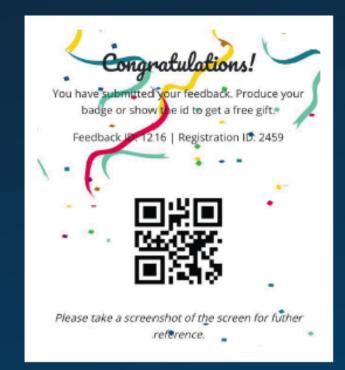


Pradeep Kumar of Bosch India lighting the ceremonial lamp with Dr. Sivaji Chakravorti of NIT Calicut before signing the agreement.


"The collaboration between NIT Calicut, MathWorks, and Bosch narrowed the gap between academia and industry, producing an electric vehicle system engineering course that has been both well received by our students and highly useful for them as well." - Dr. Kumaravel Sundaramoorthy, NIT Calicut

Enabling Collaboration to strengthen Mobility Eco-System

Summary : Evolution of Model-Based Design for Future Mobility



Please provide your Feedback for this Session. You will also receive a Feedback Link via SMS on your registered Mobile Number

https://tinyurl.com/ypr9z7rx

Enjoy the conference

