MathWorks AUTOMOTIVE CONFERENCE 2023 India

Master class - Driving Efficiency and Performance using Motor Control Workflow for Electric Vehicle

Rahul Choudhary, MathWorks

Ananth Kumar, MathWorks

📣 MathWorks

The Heart of the Electric Powertrain: Motors

Environment Visualization Drive Cycle Source Longitudinal Driver FTP75 (2474 seconds) Passenger Car Controllers LdTrq ALL OLIV Info 🕨 Flux-Based PMSM Induction Motor Info 🕨 600 BattVol BattCurr MtrTrq 400 TrqCmd MtrSpd Interior PMSM Mapped Motor

Info

Surface Mount PMSM

- Component Selection?
- Component Sizing?
- Trade-off Studies?
- Detailed Component Modeling and Control Design?

Motor Selection

 $\left(\right)$

	Overview of motor	S		
Select motor type and spec	Phase C Phase B Phase A	Phase C Phase B Phase A	Phase C Phase B Phase A	Phase C Phase B Phase A
	Squirrel Cage Induction Motor (IM)	Brushless DC Motor (BLDC)	Permanent Magnet Synchronous Motor (PMSM)	Switched Reluctance Motor (SRM)
Motor parameterization		Advan	ages	
Plant modeling	 Low material cost/ kg Robust, reliable, Simple Control Less maintenance 	 Efficient, reliable High Power Density and High torque at low speed 	 Low noise, smooth operation High performance and efficiency over operating range 	 Simple and robust construction Low cost, long constant power range
	 Low efficiency, low power factor specially at light loads, Heavy, High Copper loss 	 Higher torque ripples and cogging torque leads to vibration, noise and poor position control 	 High Cost Demagnetizing risk Requires complex control 	 High noise, torque ripples Complex Control High Switching losses
		Industry E	xamples	
	Tesla model X, Toyota RAV4 EV, Renault Zoe	Hero Electric, Yamaha EC- 03, Bounce	Tesla Model S, Chevrolet Bolt, Hyundai Kona Electric	Jaguar I-PACE Concept, Ford Fiesta EV Prototype

Motor Selection

Select motor type and spec

In this presentation, we will focus on Interior PMSM because of:

- High power density and efficiency
- Motor can spin more than base speed

Motor Selection

• Note: CW direction of T & ω is taken as +ve ref for explanation only.

Motor Parameterization and Model Fidelity

Motor Model Fidelity Level

Computational Time vs. Model Complexity

Model Complexity & Detail

Blockset

Motor Control

Simscape Electrical

Motor Parameterization

If motor exist

Select motor type and spec

Motor parameterization

Plant modeling

Estimate Motor Parameters Using Motor Control Blockset Parameter Estimation Tool

Motor Control Blockset" provides a parameter estimation tool that estimates the motor parameters accurately. Use the estimated motor parameters to simulate the motor model and design the control system. Therefore, the simulation response with the estimated parameters for the motor model is close to the behavior of the motor under test.

The parameter estimation tool determines these motor parameters for a Permanent Magnet Synchronous Motor:

Motor parameters	Units
Phase resistance (R _s)	Ohm
d and q axis inductances (L_d and L_q)	Henry
Back-EMF constant (K_e)	Vpk_LL/krpm (where Vpk_LL is the peak voltage line-to-line measurement)
Motor inertia (J)	Kg.m [*] 2
Friction constant (F)	N.m.s

running on the Hardware

Lumped Parameters

From datasheet or

Instrumented tests

If motor and dyno test setup are available

Generate Parameters for Flux-Based PMSM Block Using MathWorks tools, you can create lookup tables for an interior permanent magnet synchronous motor (PMSM) controller that characterizes the d-axis and q-axis current as a function of d-axis and q-axis flux. To generate the flux parameters for the Flux-Based PMSM block, follow these workflow steps. Example script C-eatingIdqTable.m calls gridfit to model the current surface using scattered or semi-scattered flux data. Workflow Description

Workflow	Description
Step 1: Load and Preprocess Data	Load and preprocess this nonlinear motor flux data from dynamometer testing or finite element analysis (FEA): • d- and q- axis current • d- and q- axis flux • Electromagnetic motor torque
Step 2: Generate Evenly Spaced Table Data From Scattered Data	Use the gridfit function to generate evenly spaced data. Visualize the flux surface plots.
Step 3: Set Block Parameters	Set workspace variables that you can use for the Flux-Based PM Controller block parameters.

From Dyno test data

Saturation

Motor doesn't exist but FEA data from motor design tool is available

From FEA tools such as ANSYS Maxwell, JMAG, Motor-CAD

Saturation + Spatial

Harmonics

Parameterization helps with Motor Modeling which captures motor dynamics and helps us with Control Design

Motor Parametrization using Datasheet

) Select motor type and spec

Motor parameterization

Plant modeling

PMSM

PMSM				🗹 Auto Ap	ply 🧉
Settings	Description				
NAME			VALUE		
Modeling	option		No thermal port		`
Selected	part		<click select="" to=""></click>		
Main					4
Electric	cal connection		Composite three	-phase ports	
Windin	ig type		Wye-wound		
Modeli	ng fidelity		Constant Ld, Lq,	and PM	
> Numbe	er of pole pairs		6		
Permanent magnet flux linkage parameterization		Specify flux linkage			
> Permanent magnet flux linkage		0.03	Wb		
Stator	parameterizati	on	Specify Ld, Lq, a	nd L0	
> Stator	d-axis inductan	ice, Ld	0.00019	н	
> Stator	q-axis inductan	ice, Lq	0.00025	н	
> Stator	zero-sequence	inductance, L0	0.00016	н	
> Stator	resistance per	phase, Rs	0.013	Ohm	
Zero se	equence		Include		,
Rotor a	angle definition		Angle between t	he a-phase magnetic	: axis
Iron Lo	sses				
Mechar	nical				
Initial 1	Targets				
Nomina	al Values				

SELECT	FORMAT						
> >							
Apply all Reset all	Manufacturer	All		-			
apply an instantion		All					
PARAMETERIZE		ABB_	BALDOR				
Select part		Allied	Motion				
#Part number	:: Manufactu	Anahe	eim_Automation		::RatedSpeed,rpm	:: PolePairs	
BSM132C-8200AA	ABB_BALDO	B_R_	Automation		1800		
BSM33C-5177MHQ	ABB_BALDO	Electr	ocraft		1800		
BSM5ON-133	ABB_BALDO	Parke	r_Motors		4000		
BSM5ON-275	ABB_BALDO	SEM_	Motors	2000			
BSM63N-133	ABB_BALDO	Sieme	ns	4000			
HDS100-0206A	ABB_BALDO	Swiss	_Mekatronix	3000			
HDS130-0817B	ABB_BALDO	Teknio	_Motors	2000			
HDS130-1829B	ABB_BALDO	R	2900	18.0000	1500		
HDS180-2540B	ABB_BALDO	R	4000	25.0000	1500		
HDS180-4876B	ABB_BALDO	R	7600	48.0000	1500		
HDS65-01024		R	190	0.009 0	3000		
Compare coloriad	part with block	_					
Compare selected	part with block						
🗄 Parameter name			#Parameterization	:: Override dat	asheet value 💠 Part	value:BSM132	
Main>Number of pole pairs			Datasheet derived		✓ 4		
Main>Permanent magnet flux linkage			Datasheet derived		✓ 0.2292	230859562701	
Main>Torque constant		Datasheet derived		✓ 0.9169	923438250803		
Main>Back EMF cor	nstant		Datasheet derived		✓ 0.9169	923438250803	
Main>Stator d-axis i	nductance, Ld		Datasheet derived		0.0011	15	
Main>Stator q-axis i	nductance, Lq		Datasheet derived		✓ 0.0011	15	
Main>Direct-axis cu	rrent vector, iD		Parameter not set		[-200 (0 200]	

[-200 0 200]

Main>Quadrature-axis current vector, iQ Parameter not set

Motor parameters estimation from Instrumented tests

50

-300

-250

-200

-150

i_d [A]

-100

-50

0

Motor parameters from dyno test

Motor parameters from motor design tool

) Select motor type and spec

Motor parameterization

Plant modeling

1			
2.1528E+88			
2.0015E+00			
1.06582+88			
1.7216E+88			
1.5701E+00			
1.43462-00			
1.29128+80			
1.1+77E+88			
1.00422-00			N I I I I I I I I I I I I I I I I I I I
8.0070E-01			
7.1792E-01			
5.7386E-01	A		
4.3039E-01			
2.8693E-01			
1.4346E-01			
1.20551-00			
	and the second second		

* Copyright 2017-2019 ANSYS, Inc. Unauthorized

* ANSYS and all other ANSYS, Inc. product names

* of ANSYS, Inc. or its subsidiaries in the Unite

1.000000000e-003 1.000000000e-00

1.000000000e-003 1.000000000e-0

1.000000000e-003 1.000000000e-0

(21: -300 -270 -240 -210 -180 -150 -120

(21: -300 -270 -240 -210 -180 -150 -120 (31: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

* is reproduced with permission of ANSYS, Inc.

B BasicData

Poles

E BasicData

B PhaseImp 3

PhaseA

PhaseB

PhaseC

E PhaseImp

B Sweepings

Id Iq

Rotate E Sweepings

B OutputMatrix DQ0

Version 1.0

8

14-N = 8/2; % Number of pole pairs 15 16 %B PhaseImp 3 17 8 PhaseA 1.000000000e-003 1.0 18 1.000000000e-003 1.0 웅 PhaseB 19 웅 PhaseC 1.000000000e-003 1.0 20 %E PhaseImp 21 22 %B Sweepings 23idVec = [-300 -270 -240 -210 -180 -15 24iqVec = [-300 - 270 - 240 - 210 - 180 - 15]25angleVec = [0 1 2 3 4 5 6 7 8 9 10 1]26 %E Sweepings 27 28 %B OutputMatrix DQ0 29data = [30 index fluxD 31 0 -9.2992778243e-002 -3.02

Editor - C:\Program Files\MATLAB\R2021a\toolbox\physmod\elec\eedemos\ee ece t

ee_ece_table.m 💥 🕂

13

R C C FEM-Parameterized PMSM

Motor parameters from motor design tool

Select motor type and spec

Motor parameterization

Plant modeling

				400 P	hase voltages		
	FEM-Parar	meterized PM	SM		< Auto Apply	?	
ee_import_fem_motorcad	Settings	Descriptio	n				X
•	NAME			VALUE			
	Modeling	g option		3-D flux linkage data Sho	w thermal port	\sim	
	> Electri	cal)18 0.02
Dynamometer	> Iron Lo	osses					
	> Mecha	nical					
	V Tompo	araturo Dor	ondonco				
	> Measu	urement temr	perature	298.15	к	~	
FFM-Parameterized PMSM	> Resist	tance tempera	ature coefficient	3.93e-3	1/K	~	
Settings Description	> Perma	anent magnel	flux temperatur	-0.001	1/K	~	118 0.02
NAME	Thomas		nux temperatur.		1/10		gnitude vector
Modeling option	* Therm	al Port					A-phase with g-axis
Electrical	> Therm	nal mass for e	each stator windi	. 100	J/K	\sim	angle vector
Flux linkage data format	Initial	stator windir	ng temperatures	[298.15, 298.15, 298.15]	К	\sim	cage cage
Winding type	> Rotor	thermal mas	S	200	J/K	\sim	hkage
Expose neutral port	Potor	initial tompo	ratura	209.15	, V	~	ined
> Number of pole pairs	KULUI	initial tempe	lature	290.15	Ν		+
Park's convention for tabulated	> Percer	ntage of mair	n flux path iron l	90			teinmetz hysteresis loss coefficient matrix
> Peak current magnitude vector, I	> Percer	ntage of cros	s-tooth flux path	30			tz eddy current loss coefficient matrix
> Current advance angle vector, B	gammaVec <	<1x3/ double> de		data.Iron_Loss_Stator_T	ooth_Hysteresis_Coefficie	ent; %	۲۲ + Steinmetz hysteresis loss coefficient matrix
> Rotor angle vector, theta	angleVec	<1x37 double> de	g v s	tatorKjMat = data.Iron_Loss_Stator_ data.Iron Loss Stator T	Back_Iron_Eddy_Coefficier ooth Eddy Coefficient: %	nt + . Steir	 nmetz eddv current loss coefficient matrix
> A-phase flux linkage, F(I,B,theta)	fluxAmat <25	5x37x37 dou W) ~ R	s = data.Phase_Resistance_DC_at_20C	; % Stator resistance		
> Torque matrix, T(I,B,theta)	torqueMat <2	25x37x37 do N*	m v				

Motor Constraint Curves and Characteristics

- Display Motor Constraints such as
 - MTPA curve (Maximum Torque per Ampere)
 - MTPV curve (Maximum Torque per Voltage)
 - Voltage Limit curve
 - Current Limit
- Exploration Motor Characteristics

-2

5000

Speed (rpm)

10000

5000

Speed (rpm)

Figure : Dependency of curves and characteristics on parameters changes

Ref: https://www.mathworks.com/help/mcb/ug/pmsm-characteristics-constraint-curves.html

Power Converter Model Fidelity

Variant approach for different plant fidelity level

How do I get motor

motor model?

parameters to develop my

✓ Use instrumented test or dyno test or FEA data for

parameterizing the motor

-

Modeling

Engineer

- Workflow is defined for Interior PMSM
- Steps to parameterize Motor using datasheet, running instrumented tests, FEA tool or dyno test data
- Model motor and inverter with different fidelity levels

Control algorithm design - Different control strategies

Field-weakening control architecture with block to generate optimum control reference

Compare critical operating points in Torque-Speed characteristic curve and Id_ref, Iq_ref plot

	500 1000 1500 2000 2500 3000 Speed (rpm)
Region	
OA	Maximum torque per Amphere (MTPA)
AB	Field-weakening control (Beyond base speed)
BC	Field-weakening control honoring Maximum Torque per volt (MTPV)
СО	Field-weakening control honoring Voltage constraint limit
С	C is max achievable speed where frictional torque equals motor deliverable torque

Implementing Field-weakening control with motor-dyno test data

Number of sole sets.

Field-weakening control for Interior PMSM

Fig. shows speed ref and measured speed with varying load and speed ref in Dashboard simulation

Id and Iq plot in dq axis shows the current trajectory with increase in speed

Field-weakening control for Interior PMSM

Id and Iq plot in dq axis shows the MTPA path

MTPA Control Reference

MTPA

Generates Id_ref and Iq_ref for MTPA, field-weakening control and MTPV

Control algorithm design - Novel control strategies

Control-loop gain tuning

Simulate & Verify

Simulate on 4-quadrant operations and validate the motor and control characteristics.

Control algorithm design

Control-loop gain tuning

Simulate & Verify

Motor resizing

Motor Resizing

Motor Resizing

Motor parameterization and Plant modeling

Control algorithm implementation

Code gen and deployment

- For resizing motor, No need to run dyno test again.
- Reuse the motor parameters from dyno test with a factor.
- This saves laboratory test time and money.

- Discussed the Field-weakening control (MTPA, MTPV)
- Discussed the control gain tuning strategies
- Discussed the motor resizing

Model architecture with layers to assist porting algorithm between different hardware (Proto-type to Production)

Model architecture to assist porting algorithm between different hardware (Proto-type to Production)

Processor driver code from Hardware support package or Driver block ADC, PWM, Interrupt trigger, Serial communication blocks

Generate c-code or hdl-code and integrated with peripheral driver code

Processor driver code from Hardware support package or Driver block

Processor peripheral driver code generation (ADC, PWM, Interrupt trigger, Serial communication)

Embedded Coder Support Package for Texas Instruments C2000 Processors by MathWorks Embedded Coder Team STAFF

Generate code optimized for C2000 MCU

Embedded Coder[®] Support Package for Texas Instruments C2000^{or} Processors enables you to run Simulink[®] models on TI C2000 MCUs. Embedded Coder automatically generates C code for your algorithms and

Field-Oriented Control of PMSM Using NXP[™] S32K144 Kit version 1.0 Shiveprased Narayan STATE

The workflow demonstrates Field Oriented Control of a Permanent Magnet Syno using NXP^{ns} MCSPTE1AK144; S32K144 Development Kit

FOC-of-PMSMField-Oriented Control of Permanent Magnet Synchronous Motor Using N S32K144 Development kitThis example implements a motor control system using the N MCSPTE1AK144 hardware. The

Model architecture

Processor driver code gen

Deployment

Static code analysis

Sensor calibration

Profiling (PIL)

AUTOSAR Integration

Demo for Motor Control Deployment on Microchip Controllers version 1.0.0 by Brian McKay STAFF Demo used in MathWorks-Microchip joint webinar: Deploying Motor Control Algorithms on Microchip dsPIC, PIC32, and SAM Controllers.

which includes a dsPIC33E Digital Signal Controller. The demo also require you to download and install the free add-on MPLAB Device Blocks for Simulink: dsPIC, PIC32, and SAM MCU's. View the webinar for a

Microchip

TΙ

Embedded Coder Support Package for Infineon AURIX TC4x Microcontrollers by MathWorks Embedded Coder Team STAFF

Generate code optimized for Infineon AURIX TC4x Microcontrollers

Infineon

Generate code optimized for STMicroelectronics STM32 Process boards

HDL Coder Support Package for Xilinx Zynq Platform by MathWorks HDL Coder Team STAFE

HDL Coder" Support Package for Xilinx "Zynq"-7000 Platform supports the generation of IP cores that can be

Generate code for the FPGA portion of the Zyng-7000 Sol

Hardware Suppor

FPGA designs using Xilinx Vivado® or Xilinx ISE. When used in combination

STM

Xilinx

FPGA

Perform static-code analysis tool using Polyspace

Analyze and Verify Motor Control Algorithms Using Polyspace R2023b

This example uses the Polyspace® static code analysis tools to analyze and verify Simulink® models containing motor control algorithms. Static code analysis is a software verification technique that analyzes source code for quality, reliability, and security without executing the code. This approach uses robust error detection routines (that include checks for critical run-time errors) to identify bugs and defect <u>3. Click Run Analysis to start running the Code Prover tool</u>.

ensures compliance with common coding standar

This example uses:	
Polyspace Bug Finder	
Polyspace Code Prover	
Motor Control Blockset	

4. After the tool execution completes, click Polyspace > Analysis Results to open the code analysis results in the Polyspace app.

) Model architecture

Calibrate position sensors by spinning the motor in hardware using reference examples

https://in.mathworks.com/help/mcb/gs/quadrature-encoder-offset-calibration-pmsm-motor.html

https://in.mathworks.com/help/mcb/gs/hall-sensor-sequence-calibration-bldc-motor.html

Perform profiling test and measure the execution time of critical control

Code Verification and Profiling Using PIL Testing - MATLAB & Simulink Example - MathWorks India

Reference: https://www.autosar.org/standards/classic-platform

Generate AUTOSAR compliant code and ARXML file for motor control component

Model	archit	ecture
-------	--------	--------

) Processor driver code gen

Deployment

Static code analysis

Sensor calibration

Profiling (PIL)

AUTOSAR Integration

Name	Date Modified 👻	CDD_TorqueControl_component.arxml 🗶 +		Rte_CDD_TorqueControl.h 🛛 +
Folder		1 ="1.0" encoding="UTF-8"?>	<u>^</u>	ADXML achemat "D30 11"
🖃 🧮 stub	9/27/2023 11:39 AM		-	AKAML SCHEMA. K20-11
Rte_Type.h	9/27/2023 11:39 AM	2	10	File generated on: "27-Sep-2023 11:39:16" */
Rte_CDD_lorqueControl.h	9/27/2023 11:39 AM	3 # XML Component Description for model CDD_TorqueControl	11	1
CDD TorqueControl MemMap.h	9/27/2023 11:39 AM	4 : 1.17	1.5	tifndof Bto CDD TongueControl h
E imwinternal	6/1/2023 4:14 PM	En vension Simulink Coden 0.0 (D2022a) 10 Nev 2022	12	#Inder Kte_CDD_forduecontrol_n
ARXML File		5 VERSION : SIMULIAR CODER 9.9 (R2025a) 19-NOV-2022	13	3 #define Rte_CDD_TorqueControl_h
CDD_TorqueControl_component.arxml	9/27/2023 11:39 AM	6 le generated on : Wed Sep 27 11:39:19 2023	14	4 #include "Rte Type.h"
CDD_TorqueControl_datatype.arxml	9/27/2023 11:39 AM	7 n : 1941239435 3344221716 3681281373 191976753	1 10	#include "Compiler b"
CDD_TorqueControl_implementation.arxml	9/27/2023 11:39 AM		1-	#include compiler.in
CDD_forqueControl_interface.arxml	9/2//2023 11:39 AM	•	16	5
Source		9 3="http://autosar.org/schema/r4.0" xmlns:xsi="http://www.w3.	org/20 17	7 /* Data access functions */
CDD_TorqueControl.c	9/27/2023 11:39 AM	10 jES>	15	#define Rte TRead CDD TorqueControl Sten Theta Theta Rte TR
CDD_TorqueControl_data.c	9/27/2023 11:39 AM	11 VCKAGES	10	
DMR File			19	
C/C++ Header		12 SHORT-NAME>Components	20	Float Rte_IRead_CDD_TorqueControl_Step_Theta_Theta(void);
CDD_forqueControl.h	9/2//2023 11:39 AM	13 ELEMENTS>	21	
CDD_TorqueControl_private.n	9/27/2023 11:39 AM	14 COMPLEX-DEVICE-DRIVER-SW-COMPONENT-TYPE UUID="2312b9f1-d	193-54	Histing Die Theod CDD Tenner Control Chen Fachle Fa Die Theo
rtwtypes.h	9/27/2023 11:39 AM		24	2 #define Rte_IRead_CDD_Forquecontrol_Step_Enable_En Rte_IRead
MAT-file		15 <shori-name>CDD_IOrqueControl</shori-name>	23	3
Makefile		16 <ports></ports>	24	Boolean Rte IRead CDD TorqueControl Sten Enable En(void):
RSP File		17 (R-PORT-PROTOTYPE ITD="bb3386e7-96e4-5fbc-0719-7	a5f4c' ar	
TMW File			2	
Text Document		18 <shori-name>Ineta</shori-name>	26	6 #define Rte_IRead_CDD_TorqueControl_Step_Iab_Ia Rte_IRead_Cl
		19 <required-com-specs></required-com-specs>	27	7
		<pre>20 <nonquelied_recetver_com_spec></nonquelied_recetver_com_spec></pre>	20	Elect Bto IDood CDD TengueControl Ston Job Ta(woid):
			DROT(i ioac kie_ikeau_obb_ioiquecontroi_step_iab_ia(void);
		ZI CATA-ELEMENT-REF DEST= VARIABLE-DATA	29	9
		22 <handle-out-of-range>NONE<td>-OF-R/ 36</td><td>#define Rte IRead CDD TorqueControl Step IdgRef Id Ref Rte</td></handle-out-of-range>	-OF-R/ 36	#define Rte IRead CDD TorqueControl Step IdgRef Id Ref Rte
		23 <uses-end-to-end-protection>false<td>ES-ENI 31</td><td></td></uses-end-to-end-protection>	ES-ENI 31	
		CALIVE-TIMEOUT>6	32	<pre>2 Float Rte_IRead_CDD_TorqueControl_Step_IdqRef_Id_Ref(void);</pre>

Summary

- Discussed on the motor control workflow and reference examples available for each of the steps
- Different methods to parameterize the motor and different fidelity levels in modeling
- Different control strategies and its control loop gain tuning
- Deploy to the hardware and Validate

MathWorks AUTOMOTIVE CONFERENCE 2023

Learn More

MATLAB and Simulink for Motor Drives and Traction Motors

Develop algorithms and embedded software for motor-inverter control systems

Free trial

How It Works

-x

-~

Design motor control algorithms

Test motor control algorithms

Im

Implement motor control algorithms on hardware

111

....

MathWorks Videos

PWWM 0 1022

Suggest a video

Understanding Field-Oriented Control | Motor Control, Part 4 Reinforcement Learning for M Developing Field-Oriented S Control

Motor Control, Part 3: BLDC Speed Control Using PWM

» View all MathWorks videos

Simulate Motor Control Algorithms

Use MATLAB^{*} and Simulink^{*} to build motor models from libraries of motors, inverters, sources, and loads. Choose the level of fidelity in motor and inverter modeling based on your requirements and simulate motor control algorithms.

- Implement linear lumped-parameter motor models and use average value inverters with Motor Control Blockset[™] for fast simulations
- Model and simulate nonlinear motor dynamics and ideal or detailed switching in the inverter using Power Systems Simulation Onramp
- Parametrize motor models to capture motor dynamics with the help of instrumented tests or import parameters from a database or finite element analysis

Motor Control Design with MATLAB and Simulink

Enable Your Team on Motor Control

Power Electronics Control Design with Simulink and Simscape

Learn to model power electronic systems in the Simulink environment using Simscape Electrical[™] and to design control with Simulink Control Design.

Control System Design with MATLAB and Simulink

Learn to design and model control systems with Simulink. Topics include system identification, parameter estimation, control system analysis, and response optimization.

Embedded Coder for Production Code Generation

Develop Simulink models for deployment in embedded systems. Topics include code structure and execution, code generation options and optimizations, and deploying code to target hardware.

Generating HDL Code from Simulink

Learn to prepare Simulink models for HDL code generation, generate HDL code and testbench for a compatible Simulink model, and perform speed and area optimizations.

Power Electronics Simulation Onramp

5 modules | 1 hour | Languages Learn the basics of simulating power electronics converters in Simscape.

Circuit Simulation Onramp

7 modules | 2 hours | Languages Learn the basics of simulating electrical circuits in Simscape.

MathWorks AUTOMOTIVE CONFERENCE 2023 India

Thank you

© 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

FOC Autotuner perturbs the output and computes the control gain

Block Parameters: Field Oriented Control Autotuner X	<	
FOCAutoTuner (mask) (link)		
This block automatically and iteratively tunes multiple control loops used in Field Oriented Control applications. The optional loops to tune are the quadrature axis (q-axis) current, direct axis (d-axis) current, speed and flux loops. Use "Help" button for more information regarding general tuning workflow.		
Parameters		
Tuned Loops		
☑ Tune D-axis current loop ☑ Tune Q-axis current loop		
Tune speed loop		
Loon Settings		
∇ Hee same settings for current loop controllers (D-avis \pm O-avis)		
Use same settings for outer loop controllers (Cread \pm Elux)		Ain I
Se same sectings for outer roop conditioners (speed + max)		
Experiment Sample Time		
Experiment sample time (sec) -1		
Tuning Experiment Block		
Loop Tuning Settings		
Tuning sample time (sec) Ts tuning 0.005 : Use different sample time for tuning		
▼ Current Loops (D-axis + O-axis)		
Controller Discrete Time Settings		
Controller sample time (sec) Ts 5e-05		
Type: P1		
Form: Parallal	perturbations perturbations	
Filter method Forward Euler		
Tuning Goals		
Target bandwidth (rad/sec) PI_params.CurrentBW 2000	Classed lash	
Target phase margin (degrees) PL params CurrentPhaseMargin 80	perturbations	
	response	Closed-loop
▼ Speed Loop	before	response
Controller Discrete Time Settings	tuning i	after tuning
Type: PI V Controller sample time (sec) Ts_speed 0.0005		
Integrator method Forward Euler V		
Form: Parallel Filter method Forward Euler		
Tuning Goals		
Target bandwidth (rad/sec) PI_params.SpeedBW 50		
Tarret phase marnin (degrees) PI params SpeedPhaseMarnin 20		
rarger phase margin (vegrees) ra_parants-speeur hasemargin 50 :		
	▼	

Cancel

Help

Apply

OK

Online Frequency Estimation injects perturbation in the output of the controller

