
1© 2014 The MathWorks, Inc.

A Unified Approach

to

Model and Code Verification

12 May 2016

Chuck Olosky Application Engineering

Anthony Abrham Application Engineering



2

Motivation

 Most controls applications are a combination of 

model-based generated code and hand code

 How do I efficiently test this mix of hand code 

and generated code?

 MathWorks has tools for testing models and 

tools for testing code

 Is there a workflow for me to use these tools in 

a complementary, optimum way?



3

Agenda

 Static analysis of the model and code before functional 

testing

 Dynamic, functional testing of the model, s-function 

and generated code

 Static analysis of the integrated code:                              

hand code, s-function code and generated code

 A unified, complementary model and code verification 

workflow to continually increase design confidence



4

Case Study:  Cruise Control Application

65 mph

Objective: set cruise control target speed and pedal position 

based on driver & vehicle inputs

Cruise Control Application (C code)

• Hand code components 

• Model-based Stateflow component

• Model-based S-function component



5

Case Study:  Cruise Control Architecture

Cruise Control Application

Read Inputs

Fault Logging

Pedal Command 

Control Module

Write Outputs

Hand Code

MBD Gen Code

S-function Code

Target Speed  

Control Module 

System Inputs

Cruise Power

Brake

Vehicle Speed

Coast/Set

Accel/Resume

Function

Scheduler

System Outputs

Target Speed

Engaged

Pedal Position



6

Case Study:  Roles & Workflow

 MBD Controls Guy:  Chuck
– Develops modules using Simulink models

– Integrates C code with models via s-functions

– Generates the code 

– Relies on model-based testing methods

 Integration & Build Guy:  Anthony
– Develop C code modules by hand

– Integrates hand code and generated code

– Creates the ECU build

– Relies on the HiL bench for testing

Read Inputs

Fault Logging

Write Outputs

Cruise Control 

Application

Target Speed  

Control Module 

Pedal Command 

Control Module

Generated

C Code

Integrated

C Code



7

Case Study:  Deliver First Production Release to Customer

To deliver our first production release we will need the following new features/changes:

 Move signals/cals from floats to integers in Target Speed Module

 Include customer lookup table code in Pedal Command to support calibration

 Demonstrate generated code is MISRA compliant

 Remove unused fault record

 Migrate the code to run on customer’s  ECU (14-bit to 12-bit ADC)

In addition to the changes we will need to provide functional test results for the model-
based modules and the integrated code.



9

Model-based Design Tasks

First let’s focus on the model-based design tasks and what checks are 
available:

 Convert signals/cals from floats to integers in Target Speed Module

 Include the customer lookup table in the Pedal Cmd to support calibration

 Demonstrate generated code is MISRA compliant

Our approach will be to do checks before functional testing, 

early in the development to minimize re-work.



10

Floats to Integers:  Checking the Model 

for Design Errors

Simulink Design Verifier identifies model design errors that may result 

in “dead logic” that would prevent successful functional testing

Target Speed  

Control Module 



11

Root Cause Analysis/Fix of Dead Logic

 Dead logic due to “uint8” operation on incdec/holdrate*10

 Fix change the order of operation 10*incdec/holdrate

Condition can never be false



12

Model-based Design Tasks

First let’s focus on the model-based design tasks and what checks are 
available:

 Convert signals/cals from floats to integers in Target Speed Module

 Include the customer lookup table in the Pedal Cmd to support calibration

 Demonstrate generated code is MISRA compliant

Our approach will be to do checks before functional testing, 

early in the development to minimize re-work



13

Customer Lookup Table:  Checking the S-Function Code 

for Runtime Errors
Pedal Command 

Control Module



14

Root Cause Analysis/Fix of S-Function Run-time Errors Pedal Command 

Control Module



15

Model-based Design Tasks

First let’s focus on the model-based design tasks and what checks are 
available:

 Convert signals/cals from floats to integers in Target Speed Module

 Include the customer lookup table in the Pedal Cmd to support calibration

 Demonstrate generated code is MISRA compliant

Our approach will be to do checks before functional testing, 

early in the development to minimize re-work



16

Checking Model for MISRA compliance with Model Advisor Target Speed  

Control Module 



17

Target Speed  

Control Module Checking Model for MISRA compliance with Model Advisor



18

 Checks model design and code configuration settings

 Increases likelihood of generating MISRA C:2012 compliant code

Checking Model for MISRA compliance with Model Advisor Target Speed  

Control Module 



19

Configuring Polyspace from the Model Target Speed  

Control Module 



20

Launching Polyspace from the Model Target Speed  

Control Module 



21

Review Bug Finder MISRA results
Target Speed  

Control Module 



22

Reduce MISRA violations with “Code Placement” setting
Target Speed  

Control Module 



23

Justify other violations by adding annotation
Target Speed  

Control Module 



24

Model-based Design Tasks

First let’s focus on the model-based design tasks and what checks are 
available:

 Convert signals/cals from floats to integers in Target Speed Module

 Include the customer lookup table in the Pedal Cmd to support calibration

 Demonstrate generated code is MISRA compliant

Our approach will be to do checks before functional testing, 

early in the development to minimize re-work 



28

Model-based Design Tests

All checks are complete, we will need to provide test results for the 
model-based modules:

 Functional testing of s-function based Pedal Command module

 Equivalence (model-to-code) testing of the Target Speed module



29

Functional Testing of Pedal Command (S-Function) Pedal Command 

Control Module

 Coverage analysis for the model and the s-function code.



30

Model-based Design Tests

All checks are complete, we will need to provide test results for the 
model-based modules:

 Functional testing of s-function based Pedal Command module

 Equivalence (model-to-code) testing of the Target Speed module



31

Check the Generated Code for Equivalent Model Behavior

 Integrated SIL mode support for model-to-code equivalence testing

 Coverage report for generated code for a detailed equivalence analysis



32

Model-based Design Tests

All checks are complete, we will need to provide test results for the 
model-based modules:

 Functional testing of s-function based Pedal Command module

 Equivalence (model-to-code) testing of the Target Speed module



33

Integrated Code Testing

The hand code design tasks:

 Remove unused fault record 

 Migrate the code run on customer’s  ECU (14-bit to 12-bit ADC)

The minor hand code changes have been made.

An ECU build was created based on the integration of hand code and generated code

We now need to provide functional test results for the integrated code on the HiL bench

Find issues that result from the integration of tested modules from 

hand code, s-function code and model-based generated code.



35

Issues Found on HIL Bench…

 The Cruise Control powered off during fault testing

 And, the Target Speed never exceeded 40 mph



36

 Read Inputs

 Write Outputs

 Scheduler

 Fault Logging

Target Speed  

Control Module

Pedal Command 

Control Module

Creating a Code Prover project to 

check the Integrated Code



37

Code Integration Check with Polyspace:

Non-terminating loop in Hand Code
Fault Logging



38

Cause of Cruise Control Powering off during fault testing
Fault Logging



39

Root cause of Cruise Control Powering off

12
10

Fault Logging



40

Fix and verify the hand code is free of Runtime Errors
Fault Logging



41

Code Integration Check with Polyspace:

Dead Code Found in Generated Code

Unreachable/Dead code

Maximum target speed = 90Vehicle speed signal propagated to 

“CruiseControl_PS.c” [0 … 40]

Target Speed  

Control Module 



42

Root Cause for Dead Code:  

Speed Sensor Input Hand Code 

Changing analog-to-digital converter from 14 to 12-bit results in dead code

MASK – accounts for scaling down 

for new ADC from 14-bit to 12-bit

Overlooked changing 

CONV_FACTOR for new ADC

Read Inputs



44

Cruise 

Control 

Application

MBD

Generated

Code

Workflow Summary:   

Complementary Model & Code Verification

• Functional testing 

(simulation)

• Check model early for design errors

• Check MISRA compliance (Mdl Advisor) 

• Check s-function code for run-time errors

• Check MISRA compliance (Polyspace)

• Code coverage (SIL)

• SIL mode support

• Check integrated code for run-time errors
Hand 

Code



45

A Complementary Model and Code Verification Process …

 Model and code checks before functional testing to minimize rework

 Perform functional, dynamic testing with model and code structural 

analysis with automation, and reuse of test assets

 Analyze the code to find issues resulting from the integration of

o hand code

o s-function code

o model-based generated code

 Includes formal methods analysis to go beyond functional testing

 Enables more, early testing of the model and code

 Continual increase in design confidence



46

Thank You!


