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Key Points

▪ Customize pre-built vehicle models to assess electrified powertrain variants

▪ Apply optimal control techniques to make fair comparisons

▪ Quantify tradeoffs between fuel economy and performance
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What Is Meant By “Full Vehicle Simulation”?

▪ Plant model + closed-loop control algorithms

– Production code out of scope for today’s presentation (OBD, timing, etc.)

▪ Right balance of accuracy / speed

– Sufficient detail for attribute analysis (fuel economy, performance, drivability, …)

– Fast enough for design optimization (much faster than real-time)

▪ Heterogeneous modeling environment 

– Support for inclusion of 3rd party simulation tools (S-function, FMU, …)
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Simulink as a Simulation Integration Platform
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Electrified Powertrain Selection

▪ Considering variants of single motor, parallel hybrids

▪ Where is the best location for the motor?
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Problem Statement

▪ Maximize:

– Fuel economy (l/100km for drive cycles Highway, City, US06)

– Acceleration performance (t0-100km/h)

▪ Subject to:

– Actuator limits for motor & engine

– Velocity within 3,2 km/h window of drive cycle target velocity

– SOC within [SOClow, SOChigh]

– |SOCfinal – SOCinit| < tol → requires iteration on supervisory control parameter
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Powertrain Blockset

▪ Goals:

– Provide starting point for engineers to build good plant / controller models

– Provide open and documented models

– Provide very fast-running models that work with popular HIL systems

Lower the barrier to entry for Model-Based Design
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Powertrain Blockset Features

Library of blocks Pre-built reference applications
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Drivetrain Propulsion Vehicle DynamicsEnergy Storage 

and Auxiliary Drive
Transmission Vehicle Scenario Builder
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Reference Applications

Full Vehicle 

Models

Virtual Engine 

Dynamometers
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What’s New in ?
Engine Test Data Import
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What’s New in ?
Energy Accounting and Reporting

▪ Simulate

– Turn on logging

– Run simulation

– Check conservation of energy 
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What’s New in ?
Energy Accounting and Reporting

▪ Simulate

– Turn on logging

– Run simulation

– Check conservation of energy 

▪ Report results

– System level summary

– Subsystem detailed view

– Excel export

– Efficiency histogram

– Time trace plots
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▪ Released in: 

▪ Similar powertrains:

– Nissan Leaf

– Tesla Roadster

– Chevy Bolt

EV / HEV Configurations Shipping with Powertrain Blockset

Multi-mode HEV → P1/P3

Pure EV

▪ Released in: 

▪ Similar powertrains:

– Hybrid Honda Accord
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EV / HEV Configurations Shipping with Powertrain Blockset

P2 HEV

Input Power-Split HEV

▪ Released in: 

▪ Similar powertrains:

– Toyota Prius

– Lexus Hybrid

– Ford Hybrid Escape

▪ Released in: 

▪ Similar powertrains:

– Nissan Pathfinder

– Hyundai Sonata

– Kia Optima
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Flexible Modeling Framework

1. Choose a vehicle configuration

– Select a reference application as a 

starting point

2. Customize the plant model

– Parameterize the components

– Customize existing subsystems

– Add your own subsystem variants

3. Customize the controllers

– Parameterize the controllers

– Customize supervisory control logic

– Add your own controller variants

4. Perform closed-loop system 

testing

– Sensitivity analyses

– Design optimization

– MIL / SIL / HIL testing
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EcoCAR: Mobility Challenge

▪ What is it?

– Student competition for 12 North American universities

– Collaboration of industry, academia and government research labs

– Improve fuel economy through hybridization and enable level 2 automation capabilities

▪ MathWorks provided Powertrain Blockset reference applications:

– Plant models for P0 – P4 architectures

– Supervisory controller

▪ Work reused as starting point for powertrain for this work
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Plant Model:
System level
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Plant Model:
Engine Subsystem

1.5L Gasoline Engine

Maps generated from GT-POWER
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Engine Dynamometer

Controls-oriented Model Creation

Detailed, design-oriented model

Fast, but accurate controls-oriented model
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Plant Model:
Electrical Subsystem

30 kW Motor

(10 kW for P0)
650 V Battery & DC-DC Converter

(smaller sizing for P0)
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Plant Model:
Driveline Subsystem
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Controller:
Hybrid Control Module

▪ Accel Pedal → Torque

▪ Regenerative Brake Blending

▪ Energy Management
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Equivalent Consumption Minimization Strategy (ECMS)

▪ What is ECMS?

– Supervisory control strategy to decide when to use engine, motor or both

– Based on analytical instantaneous optimization

▪ Why use ECMS?

– Provides near optimal control if drive cycle is known a priori

– Can be enhanced with adaptive methods (i.e. Adaptive-ECMS)

min 𝑃𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡 = 𝑃𝑓𝑢𝑒𝑙 𝑡 + 𝑠(𝑡) ∙ 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑡 ,

where s(t) are the “equivalent factors”
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Equivalent Consumption Minimization Strategy (ECMS)

Equivalent fuel needed 

to recharge battery

Drive

Mode

Equivalent fuel saved 

by future battery use

Regen

Mode
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Equivalent Consumption Minimization Strategy (ECMS)

▪ Collaborated with Dr. Simona Onori from 

Stanford University

▪ For more information on ECMS, refer to:

https://www.springer.com/us/book/9781447167792

https://www.springer.com/us/book/9781447167792
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Methodology

▪ Generate Powertrain Blockset mapped engine from GT-POWER model

▪ For each Pi architecture:

– Using mapped engine model, iterate on s (controller parameter) to achieve dSOC < 1% 

across each drive cycle

– Assess fuel economy on city, highway and US06 drive cycles

– Assess acceleration performance on Wide Open Throttle (WOT) test

▪ Compare fuel economy and performance across P0 – P4 architectures
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Results
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Results

▪ ECMS provides a fair 

comparison of alternatives

▪ Placing motors closer to the 

drive wheel:

– Improves fuel economy (better 

regen efficiency)

– Degrades performance (lower 

mechanical advantage)

▪ Simulation allows you to quantify

the tradeoff

Combined City (55%) / Hwy (45%)
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Summary

▪ Assembled full vehicle simulation

– Powertrain Blockset as framework for vehicle level modeling

– Mapped engine models auto-generated from design-oriented engine model

– ECMS for supervisory controls strategy applicable to all P0 – P4 variants

▪ Assessed fuel economy / performance across several variants

– Iterated on controller parameter to identify charge neutral settings

– Generated pareto curve to quantify tradeoff between variants
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Next Steps

▪ Widen the scope of powertrain selection study

– Include two-motor HEV’s, with modified ECMS controls

– Search over design parameters (final drive ratio, battery capacity, etc.)

▪ Conduct more in-depth analysis

– Assess additional attributes of interest by including more design-oriented models 

(engine, aftertreatment, drivability, etc.)

– Integrate control features from advanced development / production

▪ Continue along the V-cycle

– Once field candidates are narrowed down to a few options, conduct more detailed 

electrification study (motor controls, battery design, etc.)

– Once vehicle platform is selected, calibrate vehicle (drivability, etc.)
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