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Executive Summary and Research Objectives

• Operational risk modeling using the parametric models in the EVT-POT approach can lead to a 
counter-intuitive estimate of value at risk at 99.9% as economic capital due to extreme events. 

• This research proposes a flexible SNP model using the change of variables technique. The 
proposed SNP models enrich the family of distributions for modeling extreme events, thus 
overcoming the parametric model misspecifications.

• The SNP models are shown to have the same maximum domain of attraction (MDA) as the 
parametric kernels, and it follows that the SNP models are consistent with the EVT-POT approach 
but with different shape and scale parameters from the parametric models. 

• When applied to the simulated datasets with heavy tails created by three different body-tail 
cutoff thresholds, the SNP models in the Fréchet and Gumbel MDAs are shown to perform 
satisfactorily by increasing the number of model parameters.

• When applied to an actual operational risk loss dataset from a major international bank, the SNP 
model capital estimate is more stable and intuitive, around 2 to 2.5 times as large as the single 
largest loss event.
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Challengers in The Operational Risk Capital Estimation

The operational risk literature of AMA/LDA approach illustrates a lot of challenges. For examples,

• Moscadelli (Banca D’Italia discussion paper, 2004) found that the estimated Pareto tail shape 
parameter often exceeds one, yielding a counter-intuitive capital estimate.

• Cope et al. (Journal of Operational Risk, 2009) found that by removing the top three loss events 
from the modelling data sample, the quantile estimate at 99.9% reduces by a 65%, reflecting the 
significant impact of extreme loss events in the capital estimation. 

• Colombo et al. (Journal of Operational Risk, 2015) used the weighted MLE by assuming the 
contaminated data points.

• Abdymomunov and Curti (Journal of Financial Services Research, 2019) proposed to rescale the 
bank loss by total assets to arrive at a more stable capital estimate through combining peer 
banks’ data. However, the unobserved characteristics that might also influence the loss.

• Neslova et al. (Journal of Operational Risk, 2006) raised concern about naïve application of EVT-
POT approach to operational risk capital modelling without a careful understanding of the loss 
dataset. It suggested that mixed true data generating processes can turn out to be difficult to 
detect if one does not look for them.

• Embrechts et al. (Modelling extremal events, 1997) commented on the challenges of making the 
body-tail cut off by following the EVT-POT approach.
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The Semi-Nonparametric Estimation

• Gallant and Nychka (Journal of Econometrics, 1987) introduced the SNP methodology by 
combining a normal kernel with Hermite polynomials, and showed that the approximation errors 
can be made arbitrarily small by increasing the polynomial truncation point.

• Chen (Handbook of Econometrics, 2007) indicated that another attractive feature of the SNP 
methodology is its ease of implementation since the SNP distribution can often be characterized 
by a finite number of parameters, reduced to a parametric model, and thus estimated by 
maximum likelihood, generalized least squares, sieve minimum distance and other methods.

• Chen and Randall (Journal of Econometrics, 1997) introduced a semi-nonparametric estimation 
using the change of variables technique in the context of binary choice models and demonstrated 
its asymptotic statistical properties. The estimated willingness to pay is found to be substantially 
different from that of the initial parametric model.

• In this research, we extend the SNP estimation by change of variables to model tail events above 
the EVT-POT threshold without treating extreme events as contaminated data points. We found 
that the SNP distributions in the Fréchet and Gumbel MDA can be used to model the heavy tail 
loss events and result in a substantially different capital estimate from the parametric model.
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The SNP Estimation Based on Jacobian Transformation

• Let 𝑓 𝑥 be the density function of any continuous variable 𝑥. Let 𝑣 = ℎ 𝑥 which has a known 
density function 𝑔 𝑣 . Then we have

𝑓 𝑥 = 𝑔(ℎ 𝑥 ) 𝛻𝑥ℎ(𝑥)

where 𝜕𝑣/𝜕𝑥 = 𝜕ℎ(𝑥)/𝜕𝑥 ≡ 𝛻𝑥ℎ 𝑥 > 0.

• For example, the following power series guarantees the gradient 𝛻𝑥ℎ 𝑥 to be non-negative.

𝛻𝑥ℎ 𝑥, 𝜃0, 𝜃1, ⋯ , 𝜃𝐾 =  𝑘=0
𝐾 𝜃𝑘𝑥𝑘 2

≡  𝑖=1
𝑚 𝑖𝛾𝑖𝑥

𝑖−1 ≥ 0

• Let 𝑔 𝑣 be the GPD density function. The approximated true density function has the mixed 
form with the weight that is a power function of degree 𝑚

𝑓 𝑥, 𝑐, 𝜃 =  

𝑗=1

𝑚

𝑗𝑥𝑗−1𝛾𝑖 1 + 𝑐  

𝑖=1

𝑚

𝛾𝑖𝑥
𝑖

−(1+
1
𝑐)

≡  

𝑗=1

𝑚

𝑗𝛾𝑗𝑥
𝑗−1𝐴𝑚 𝑥

where 𝐴𝑚(𝑥) = 1 + 𝑐  𝑖=1
𝑚 𝛾𝑖𝑥

𝑖 −(1+
1

𝑐
)
.
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Consistency With The EVT-POT Approach: An Example of SNPGPD Model

If the kernel distribution belongs to the Fréchet MDA(𝛷−1/𝑐), as does the GPD with shape 
parameter 𝑐, then the SNPGPD also belongs to the Fréchet MDA(𝛷−1/𝜉) with shape parameter 𝜉 =
𝑐/𝑚, where 𝑚 is the degree of SNP polynomial ℎ 𝑥 .

Notes: 

• The SNPGPD model with 𝐾 additional parameters or order 𝑚 has the shape parameter 𝑐/(1 + 2𝐾) or 𝑐/𝑚. 

• Instead of a constant scale parameter b for the GPD variable 𝑣, the SNPGPD model variable 𝑥 is transformed 
or “rescaled” by the power series ℎ 𝑥, 𝜃0, 𝜃1, ⋯ , 𝜃𝐾 with parameters 𝜃’s or 𝛾′s. 

• The SNPGPD model tail behavior 𝐿 𝑥 𝑥−1/𝜉 is more stable or has a smaller value than the GPD model as 
𝑥 → ∞ asymptotically, where 𝐿 𝑥 is a slow varying function. 

• As a result, the SNP distribution enriches the family of distributions that can be used to estimate the VaR 
model using the EVT-POT approach.

• The result can be proved by using the Gnedenko condition. In general, the SNP model under the continuous 
monotonic transformation 𝑣 = ℎ 𝑥 will not change the MDA of its kernel (Fréchet, Gumbel, and Weibull), 
and it follows that the SNP model is consistent with the EVT-POT approach. 
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The Representative SNP Model Log-Likelihood Functions

This research selects the following representative SNP model likelihood functions to model 
operational risk loss for the three MDAs in the Fisher-Tippett theorem.

1. Fréchet MDA: Generalized Pareto and Log-Logistic distributions

• log𝐿𝑠𝑛𝑝𝑔𝑝𝑑 𝑐, θ 𝑥 = log  𝑗=1
𝑚 𝑗𝛾𝑗𝑥

𝑗−1 − 1 +
1

𝑐
log 1 + 𝑐  𝑖=1

𝑚 𝛾𝑖𝑥
𝑖 ,

• log𝐿𝑠𝑛𝑝𝑙𝑔𝑡 𝑐, θ 𝑥 =

log 𝑐 + log  𝑗=1
𝑚 𝑗𝛾𝑗𝑥

𝑗−1 + 𝑐 − 1 log  𝑖=1
𝑚 𝛾𝑖𝑥

𝑖 − 2log 1 +  𝑖=1
𝑚 𝛾𝑖𝑥

𝑖 𝑐
,

2. Gumbel MDA: Lognormal distribution

• log𝐿𝑠𝑛𝑝𝑙𝑔𝑛 𝑐, θ 𝑥 =

−
1

2
log 2π𝑐2 − log  𝑖=1

𝑚 𝛾𝑖𝑥
𝑖 −

1

2𝑐2 log( 𝑖=1
𝑚 𝛾𝑖𝑥

𝑖)
2

+ log  𝑗=1
𝑚 𝑗𝛾𝑗𝑥

𝑗−1 ,

3. Weibull MDA for maximum: Weibull distribution

• log𝐿𝑠𝑛𝑝𝑤𝑏𝑙 𝑐, θ 𝑥 =

log 𝑐 + log  𝑗=1
𝑚 𝑗𝛾𝑗𝑥

𝑗−1 + 𝑐 − 1 log  𝑖=1
𝑚 𝛾𝑖𝑥

𝑖 −  𝑖=1
𝑚 𝛾𝑖𝑥

𝑖 𝑐
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Example 1: Simulation Dataset

• Three datasets are generated, each with 1000 observations. Heavy tails mainly come from the 
Log-Logistic and Pareto distributions. The Weibull distribution has a light tail.

Summary 

Statistics
Shape Scale

Sample 

Size
Minimum Mean Maximum

Standard 

Deviation
Skewness

Weibull 5/3 1/3 1000 0 12.67 978 55.66 11.02

Pareto 4/3 1/4 1000 0 14.57 7,856 259.13 28.15

Log-Logistic 2/3 1/20 1000 0 21.65 16,659 534.75 30.31

• Three mixed exceedance datasets with the body-tail cutoff at 50, 30, and 10 are created by using 
the Pareto, Log-Logistic, and Weibull distributed samples.

Modeling Dataset Sample Size Distribution Count Minimum Mean Maximum

Cut at 50 

72

Weibull 49 4.96 127.06 928.28

(2% Sample) Pareto 13 20.56 957.43 7805.99

Log-Logistic 10 3.1 2033.75 16609.29

Cut at 30 

128

Weibull 82 0.87 91.53 948.28

(4% Sample) Pareto 21 0.89 608.02 7825.99

Log-Logistic 15 1.74 1371.03 16629.29

Cut at 10 

258

Weibull 179 0.45 55.3 968.28

(9% Sample) Pareto 47 0.09 284.15 7845.99

Log-Logistic 32 0.23 654.89 16649.29
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The Estimated Models on the Simulation Dataset

• In total, we estimated sixty-three models on the three simulation datasets to evaluate the model 
performance, including sensitivity to the body-tail threshold. Specifically,

• Six popular parametric distributions

• Generalized Beta of Type 2 with four parameters (GB2)

• Generalized Pareto, Log-Logistic, Log-Normal and Weibull with two parameters

• Exponential with one parameter

• Five simple parametric distributions as the SNP kernels

• Exponential, Generalized Pareto, Log-Logistic, Log-Normal, and Weibull.

• Fifteen SNP models on the five kernels with two, three, four additional parameters 

• SNPGPD2p, SNPLGT2p, SNPLGN2p, SNPWBL2p, SNPEXP2p

• SNPGPD3p, SNPLGT3p, SNPLGN3p, SNPWBL3p, SNPEXP3p

• SNPGPD4p, SNPLGT4p, SNPLGN4p, SNPWBL4p, SNPEXP4p
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The SNP Model Performance Assessment

• The SNP model specification can be evaluated by gradually increasing the order of the polynomial 
to find a best fit model to the dataset.

• Since the SNP model nests the selected parametric model as a special case, traditional model 
specification tests can be carried out such as the nested LR test as UMP and Student t-test on the 
additional parameters.

• Q-Q plots will be evaluated to ensure that the model does not over-predict or under-predict the 
observed, especially for extreme events. 

• Tail distribution 1 − 𝐹(𝑥) and quantile estimate at 99.9% will be analyzed carefully due to its 
influence on the capital VaR at 99.9% which is more critically influenced by severity of extreme 
events than the count distribution.

• Sensitivity of different body-tail cutoff thresholds is assessed on the quantile estimate at 99.9%.
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Model Performance: Parametric Models

• The Generalized Beta of Type 2 (GB2) model has the best performance among the parametric models 
due to its flexibility with four parameters.

• The GPD and LogLGT models perform better than the other two parameters models since the dataset
is created using the mixture of Pareto, Log-Logistic, and Weibull distributions.

• However, the 99.9% quantile estimate for the parametric models differs significantly for the different 
models and across all three datasets with thresholds at 50, 30, and 10.

12

Performance 

Comparison
Sample 

Threshold

Six Parametric Models

GB2 GPD LogLGT LGN WBL EXP

Count of Parameters 4 2 2 2 2 1

Log-Likelihood 

Values

50 47.83 44.3 44.69 43.9 29.55 -27.9

30 147.17 146.47 146.32 146.12 128.87 7.2

10 533.15 532.96 532.81 530.51 491.23 197.12

Quantile Estimates at 

99.9%

50 205,644 90,206 38,945 13,429 8,212 3,743

30 44,804 95,713 54,351 13,032 5,493 2,391

10 20,877 27,301 19,733 5,148 2,374 1,184
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SNP Model Performance

• The SNPLGN3p performs the best with the five (or three additional) parameters.

• The quantile estimates at 99.9% by the SNPGPD, SNPLGT, and SNPLGT models are fairly stable, a key 
input component in the 99.9% VaR calculation.

13

Performance 

Comparison

Sample 

Threshold

SNP Models with three additional parameters SNP Models with four additional parameters

SNPGPD3p SNPLGT3p SNPLGN3p SNPWBL3p SNPEXP3p SNPGPD4p SNPLGT4p SNPLGN4p SNPWBL4p SNPEXP4p

Parameters 5 5 5 5 4 6 6 6 6 5

Log-

Likelihood 

Values

50 47.33 48.1 49.13 42.16 33.62 47.34 48.18 49.61 42.82 35.91

30 149.36 149.27 150.32 143.19 110.84 149.36 149.28 150.35 143.87 115.98

10 535.88 535.81 535.93 516.71 425.54 535.88 535.83 536.06 518.58 432.3

Quantile 

Estimates

50 18,993 18,973 17,735 30,370 14,378 18,636 18,325 17,727 17,438 16,970

30 18,636 18,505 17,801 28,732 1,628 18,497 18,241 17,649 17,014 2,015

10 17,370 17,374 16,940 9,841 578 17,215 17,152 16,850 10,087 568

• The Q-Q plots and tail distributions on the following pages reconfirm the observations across the 
estimated sixty-three models.
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Q-Q plots for the parametric models at thresholds 50, 30, and 10.

Q-Q plots for the SNP models with 2 additional parameters
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Q-Q plots for the GPD and SNPGPD models with 2, 3, and 4 additional parameters 

Tail distributions for the GPD and SNPGPD models with 2, 3, and 4 additional parameters 
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Q-Q plots for the LogLGT and SNPLGT models with 2, 3, and 4 additional parameters 

Tail distributions for the LogLGT and SNPLGT models with 2, 3, and 4 additional parameters 
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Q-Q plots for the LGN and SNPLGN models with 2, 3, and 4 additional parameters 

Tail distributions for the LGN and SNPLGN models with 2, 3, and 4 additional parameters 
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Q-Q plots for the WBL and SNPWBL models with 2, 3, and 4 additional parameters 

Q-Q plots for the EXP and SNPEXP models with 2, 3, and 4 additional parameters 
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Example 2: The Operational Risk Loss Modeling Dataset

• The modeling dataset contains 324 CPBP* loss events from 2007Q1 to 2017Q1. It has the 
following loss distribution after normalization for data confidentiality.

Quantiles Max 99% 95% 90% 75% 50% 25% 10% 5% 1% Min

Estimates 17.0920 1.0742 0.0568 0.0196 0.0023 0.0007 0.0002 0.0001 0.0001 0.0001 0.0001

19

• Loss distribution has an extreme heavy tail: top 1% loss events constitute 90% of the total loss 
amount.

• The CPBP regulatory fines by misconducts: market manipulation, money laundering, antitrust 
violations, improper trade, product defects or mis-sells, fiduciary breaches, and account churning.

• The CPBP loss amount is typically in the magnitude of billions of dollars, and can also vary across 
Basel Units due to different business characteristics.

*The operational loss events are categorized into seven event types by the Basel Committee, namely Internal Fraud (IF); External Fraud (EF); Employment Practices 
and Workplace Safety (EPWS); Clients, Products, and Business Practice (CPBP); Damage to Physical Assets (DPA); Business Disruption and Systems Failures (BDSF); 
and Execution, Delivery, and Process Management (EDPM).
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• Following industry practice, the Kolmogorov-Smirnoff (KS), Cramer-von Mises (CvM), and 
Anderson-Darling (AD) test statistics are calculated to determine the body-tail threshold. 

• The 43 tail constitutes 99% of the total loss amount.

The SNP Models for Operational Risk Capital VaR

The GPD Model’s Goodness-of-Fit Tests

Tests Statistic p-Value

Kolmogorov-Smirnov D 0.0646 Pr > D 0.888

Cramer-von Mises W-Sq 0.0135 Pr > W-Sq 0.996

Anderson-Darling A-Sq 0.11257 Pr > A-Sq 0.998

The GPD Model Estimates

(LogL=42.39 and Quantile at 99.9% =1013.9)

Parameter Estimate Std Err DF t-Value Pr > |t|

shape 1.5858 0.3915 43 4.05 0.0002

scale 0.02811 0.00966 43 2.91 0.0057
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The SNP Models for Operational Risk Capital VaR at 99.9%

• The log-Logistic (LogLGT) and log-Normal (LGN) distributions are also estimated for the tail events

Model Performance SNPGPD2p SNPLGT2p SNPLGN2p SNPGPD3p SNPLGT3p SNPLGN3p

Log-likelihood Value 44.91 44.88 45.61 45.66 45.29 45.93

Quantile at 99.9% 27.4 25.0 20.8 23.2 21.0 18.9

P
ar

am
et

er
s

c 1.26109 0.91034 1.89910 1.51098 0.91615 1.87869

𝜃0 5.62724 5.23231 5.13742 5.88279 5.26112 5.18562

𝜃1 -1.85799 -1.71674 -1.64903 -0.05124 -2.43365 -2.39066

𝜃2 0.10966 0.10095 0.09576 -0.34192 0.39482 0.37245

𝜃3 0.02268 -0.01758 -0.01610

t-
S

ta
ti

st
ic

s

c 3.5286 7.9220 9.2455 3.0861 7.7492 8.9210

𝜃0 5.9368 6.8134 6.9050 5.6268 6.8553 6.9400

𝜃1 -4.1974 -4.6080 -4.8425 -0.0180 -3.2068 -3.4846

𝜃2 3.3901 3.6545 3.8913 -0.4770 2.6941 2.9223

𝜃3 0.6196 -2.5005 -2.7456

LogLGT and LGN Models Parameters t-Statistics

Models LogL Quantile at 99.9% µ σ µ σ

LogLGT 41.70 143.2 -3.2692 1.1921 -10.375 7.836

LGN 41.33 35.7 -3.1454 2.1745 -9.485 9.11

• The SNP models with two and three additional parameters exhibit a significant improvement over 
the selected parametric models by the LR test or Student t-test.
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The Model Performance Comparison: Q-Q Plots

• The SNP model’s performance can be improved by increasing the number of SNP model 
parameters.
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The Model Performance Comparison – Tail Distributions

• The SNP model tails converge to zero much faster than the parametric models. The additional SNP 
model parameters provide the flexibility to improve the model fit.

• The GPD model clearly has a heavier tail than that of the LGN and LogLGT models, which will 
result in a larger capital estimate.
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The SNP Model’s Shape and Scale Parameters

• The SNP model’s scale is determined by the polynomial transformation, a power function with the 
estimated parameters  𝜃s.

• For the GPD and LogLGT models in the Fréchet MDA, the estimated shape parameters are 
c=1.5858 and 1/𝜎 = 0.8389, respectively, suggesting different tail behaviors. 

• On the other hand, the estimated shape parameters of the SNPGPD3p and SNPLGT3p models are 
𝜉 = 𝑐/𝑚 = 0.2157 and 𝜉 = 1/(𝑐 ∗ 𝑚) = 0.1559, respectively. They are smaller than the 
corresponding parametric models.

• As a result, the SNP model tail behavior is more stable than the parametric model with a smaller 
tail 𝐿 𝑥 𝑥−1/𝜉 as 𝑥 → ∞ asymptotically, where 𝐿 𝑥 is a slow varying function.
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The Economic Capital Comparison: VaR at 99.9%

• Since there is a minimum reporting threshold for bank operational risk losses, there are 281 loss 
events in the body between the minimum reporting threshold (10,000 USD) 𝑟𝑡 and the body-tail 
threshold 𝑏𝑡 that yields 43 tail events.

• Following industry practice, the distribution of the body loss events is estimated by truncated 
Lognormal model.

 𝑓 𝑥 𝜇, 𝜎 =
𝑓(𝑥|𝜇,𝜎)

𝐹(𝑏𝑡|𝜇,𝜎)−𝐹(𝑟𝑡|𝜇,𝜎)

The Body LGN Model: Log-Likelihood = 1709.3

Parameter Estimate Std Error DF t Value Pr > |t|

µ -10.0620 2.2565 281 -4.46 <.0001

σ 2.9345 1.1312 281 2.59 0.01

Model Comparison GPD LogLGT LGN SNPGPD3p SNPLGT3p SNPLGN3p

Economic Capital VaR at 99.9% 10,410 847 92 41 40 36

Log-Likelihood Values 42.39 41.70 41.33 45.66 45.29 45.93

• The annual capital estimate VaR at 99.9% is simulated with 100,000 iterations in the following 
table. The SNPLGN3p model is selected due to its model performance.
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Conclusions

• This research extends the SNP estimation to model the operational risk capital, leading to a more 
stable and intuitive capital estimate than the parametric models.

• The SNP model enriches the family of distributions to estimate heavy tails with shape parameter 
as a function of the order of polynomial series “m” and the chosen kernel shape parameter “c”. 
The SNP model scale parameter is also a function of the power series.

• On the model performance, since SNP models nest any chosen parametric model as a special 
case, the LR test and Student t-test can be assessed to ensure that the SNP model specification is 
justified.

• Q-Q plots can be evaluated to ensure that the incremental parameters are needed to 
accommodate the salient empirical regularities of heavy tails in the operational risk loss events. 
Tail distribution can be compared to visualize the stability of economic capital estimates.

• The SNP model specification is easy to implement, which yields the model parameter estimates in 
just one step. MATLAB enables this research to select a wide variety of parametric distributions 
and optimization algorithms to satisfy the precision requirement in the SNP model estimation and 
VaR capital simulation.


