

Quantification of Biological Systems Using MATLAB for Image Processing

Matloob Khushi, PhD

Jeans for Genes, proudly supporting Children's Medical Research Institute

Image Processing

Project # 1:

Proteins and Telomeres Colocalisation

Project # 2:

• DNA and Mitotic Spindle Features Quantification

Colocalisation Background

- Existing tools to study protein colocalisation use Pearson correlation or Mander's overlap coefficients to calculate the degree of colocalisation. These methods have a number of limitations.
- These methods have been shown to be greatly affected by the background noise.
- Most tools cannot automatically select a region of interest (ROI) and thus hinders analysis of a large number of images.
- Coefficient-based methods do not clearly report whether two signals are colocalised within a ROI, nor do they report the precise number of colocalisations in a specific region.

ROI-based background intensity selection

MatCol GUI

Windows of the red, green and blue channels, and their respective binary versions are provided.

Colocalisation are shown in yellow

CHLI DREN'

x MatCol 0.93 逽 🛃 🔍 🔍 👋 | H Red Channel Green Channel Blue Channel В А С D Ξ R = 5G = 25 O = 5Remove objects touching border Signal to noise preprocessing Red Green Window Size Threshold Multipliers (M): 2 2 Median Filter 3 X 3 **Results:** Colocalisations: 177 spots, 1657 total pixels, 258730 total red intensity, 270404 Wiener filter 5 X 5 total green intensity Red:322 spots,5000 pixels,677608 Intensity Green:557 spots.6071 pixels.706152 Intensity Number of Iteration: 100

P-Value is calculated by the Student's t-test.

Modular software design

Non-significant difference between manual and MatCol quantification

Column graphs of manual versus MatCol colocalisations per ROI for each cell line. ns = not significant using unpaired Student's t-test.

Significant correlation between the manual and automated quantification

XY plot of the combined colocalisation data of three cell lines. A significant correlation between the manual and automated MatCol colocalisation was found (Pearson=0.91, P<0.0001).

MatCol Colocalisation Summary

- MatCol is a novel and user-friendly tool that addresses the need to study the colocalisation of two biological features.
- MatCol has enabled us to efficiently, automatically, and without bias quantify colocalisations.
- MatCol reports colocalisation as a quantity independent of intensity.
- MatCol enables the measurement of statistical significance of the observed colocalisation of two fluorescence signals against overlap by random chance.

Quantification of DNA and Mitotic Spindles

- Untreated sample (control)
- Luciferase (+ve control)
- Clathrin heavy chain Knockdown (CHC KD)

Sample Images

CHILDREN'S MEDICAL RESEARCH

INSTITUTE

Properties Measured

Computing the fractal dimension

- Fractals are infinitely complex patterns that are self-similar across different scales
- Describes irregularity of an object

 $fractal\ dimension = \frac{\log(no.of\ selfsimilar\ pieces)}{\log(magnification\ factor)}$

Comparing the area between two regions

Samples	df	P-value
Control & Luciferase	99	0.691
Control & CHC KD	95	0.004
Luciferase & CHC KD	92	0.003

Two sample t-test

	No.	Image Property	Control and				Lucifera	se and CHC
			Luciferase		Control & CHC KD		KD	
			T/F*	P-value	T/F*	P-value	T/F*	P-value
Good	1	Area	0	0.5572	1	7.00E-16	1	2.15E-18
	2	ConvexArea	0	0.5118	1	1.70E-09	1	9.48E-13
	3	Compactness	0	0.3248	1	0.0319	1	0.0019
	4	Eccentricity	0	0.0754	1	0.013	1	5.14E-05
	5	Entropy	1	0.048	0	0.1115	0	0.5209
	6	EulerNumber	1	0.0039	0	0.9733	1	6.79E-04
Neutrol	7	Fractal_Dimension	0	0.4241	1	3.34E-05	1	7.30E-07
Neutral	8	Intensity(mean)	0	0.0649	0	0.2	0	0.4216
	9	Intensity(median)	0	0.5671	0	0.7591	0	0.7391
	10	Intensity(total)	1	0.0291	1	1.21E-04	1	1.78E-08
	11	Major Axis Length	0	0.8679	1	0.0017	1	4.84E-04
	12	Minor Axis Length	1	0.0062	1	1.68E-12	1	3.59E-17
	13	Orientation	0	0.3414	0	0.5828	0	0.1131
Rad	14	Percent Density	0	0.9067	0	0.2974	0	0.2471
Dau	15	Perimeter	0	0.2137	0	0.1464	0	0.7524
	16	Solidity	0	0.6201	1	1.88E-06	1	1.72E-06
	17	Standard Deviation	1	0.0108	1	0.022	0	0.5278
	18	Extent	0	0.5817	1	0.0028	1	4.00E-04
MEDICAL	19	Satellites	0	0.4358	0	0.3811	0	0.1258
(V) RESEARC	H							

Clustering Image Properties

Pearson correlation coefficient heatmap

Highly correlated fields could be excluded from the prediction model

CHC data

CHILDREN'S MEDICAL RESEARCH

Random Forest

Minor.Axis.Length						••• Mine
Area					0	Area
Solidity			0-			Con
Convex.Area			0			Soli
Intensitytotal.		0				Inter
Fractal Dimension		0				Frac
Compactness		••••				Ecc
Intensitymedian.		0				Con
St. Deviation		0				····· Orie
Eccentricity		• • • • • • • • • •				Inter
Percent.Density		-0				Peri
Major.Axis.Length		.				St[
Euler.Number	c	·····				Inter
Perimeter	0					Exte
Extent						Entr
Entropy						···· Majo
Orientation	0					Eule
Intensitymean.	-0					Perc
-	L					
		-		45		
	0	5	10	15	20	

MeanDecreaseAccuracy

or.Axis.Length						0
a					0	
vex.Area			(D		
dity			•••••			
nsitytotal.			••••			
ctal.Dimension			0			
entricity						
npactness		•••••				
entation		····· 0····				
nsitymedian.		·····				
meter		•••••				
Deviation		•••••				
nsitymean.		0				
ent		•••••				
ору		0				
or.Axis.Length		0				
er.Number		0				
cent.Density		0				
	L					
	0	2	4	6	8	
	MeanDecreaseGini					

Accuracy	Sensitivity	Specificity
0.80	0.714	0.862

 The programs provide a means of quantifying image characteristics rapidly

 High throughput image analysis reduces labour, sampling error and subjectivity

 Automatic image processing can detect changes not discernible to the human eye

Acknowledgement

- A/Prof. Jonathan Arthur
- Dr. Erdahl Teber
- Dr. Christine E. Napier
- Dr. Christine Smyth
- Dr. Neftali Flores-Rodriguez
- A/Prof. Mean Chircop
- Mr. Imraan Dean
- Prof. Roger R. Reddel

Köszönettel

PhD in Bioinformatics interested?

mkhushi@mkhushi.com.au

