May 28, 2024 | Beijing

# 探索光影魔术:

# MATLAB数字成像与显示技术创新

Qian Zhang, MathWorks







## Agenda



## Agenda



### Camera Pipeline Design – Traditional and Deep Learning



Implement Digital Camera Processing Pipeline



#### Develop Camera Processing Pipeline Using Deep Learning

### **Camera Calibration**

- Estimate camera intrinsic and extrinsic parameters (including fisheye)
- Remove the effects of lens distortion
- Measure sizes of real-world objects
- Compute stereo disparity and depth
- Structure from motion





Updated world scene



### **RAW to RGB Camera Pipeline**

- Import RAW files formats such as Nikon NEF, Canon CRW and Adobe DNG, and read CFA image
- Linearize CFA image data
- Scale the images and apply white-balance adjustment
- Demosaic and Rotate image
- Convert CFA Image to RGB image (or sRGB)

| Functions  |                                                                      |
|------------|----------------------------------------------------------------------|
| rawinfo    | Read information about color filter array (CFA) images in RAW files  |
| rawread    | Read CFA images from RAW files                                       |
| demosaic   | Convert Bayer pattern encoded image to truecolor image               |
| lin2rgb    | Apply gamma correction to convert linear sRGB to sRGB color space    |
| raw2planar | Separate a Bayer-patterned CFA image into individual, sensor-element |
| planar2raw | Combine planar sensor images into a full Bayer-pattern CFA image     |
| raw2rgb    | Convert a RAW file into an RGB file in one step                      |





Rendered RGB Image in sRGB Color Space

### White Balance Algorithms

Automatic white balancing is done in two steps:

- Step 1: Estimate the scene illuminant
- Step 2: Correct the color balance of the image

| Algorithms to estimate scene illuminant |                                                              |  |
|-----------------------------------------|--------------------------------------------------------------|--|
| illumwhite                              | Estimate illuminant using White Patch Retinex algorithm      |  |
| illumgray                               | Estimate illuminant using gray world algorithm               |  |
| illumpca                                | Estimate illuminant using principal component analysis (PCA) |  |

#### Montage of Best White-Balanced Images: White Point, Gray World, Cheng



### Recover Low Light Images Using Deep Learning

- Recover RAW images taken in low light with short exposure times using deep learning network
- Pretrained low-light recovery U-Net deep learning network



### **Conversion Between Color Spaces**

Support for wide-gamut color spaces

- BT.2020 (Ultra High Definition, UHD)
- BT.2100 (High Dynamic Range, HDR)
- ProPhoto (ROMM RGB) color space



4K HDR, Source: Pexels

| Function      |                                                                  |
|---------------|------------------------------------------------------------------|
| rgbwide2ycbcr | Convert wide-gamut RGB color values to YCbCr color values        |
| ycbcr2rgbwide | Convert YCbCr color values to wide-gamut RGB color values        |
| xyz2rgbwide   | Convert CIE 1931 XYZ color values to wide-gamut RGB color values |
| rgbwide2xyz   | Convert wide-gamut RGB color values to CIE 1931 XYZ color values |



## Agenda



### **Test Charts Support**

- Detection and analysis of enhanced, wedge enhanced, and wedge extended versions of Imatest eSFR test charts (ISO 12233)
- Support for X-Rite<sup>®</sup> (Gretag Macbeth<sup>®</sup>) ColorChecker<sup>®</sup> test charts

| Function          |                                              |  |
|-------------------|----------------------------------------------|--|
| measureIlluminant | Measure scene illuminant of test chart       |  |
| colorChecker      | Identifies the color patch ROI in test chart |  |
| displayChart      | Display test chart with ROI                  |  |
| measureColor      | Measure colors in test chart                 |  |
| displayColorPatch | Display measured and reference color as      |  |
| plotChromaticity  | color patches                                |  |



Enhanced, Wedge Enhanced, and Wedge Extended eSFR test chart



X-Rite ColorChecker

### Quality Measurement by Image Comparison

- Measure color deviations in test charts
- Compare color difference between 2 images in RGB or L\*a\*b color space

| Function    |                                                  |
|-------------|--------------------------------------------------|
| deltaE      | Color difference based on CIE76 standard         |
| imcolordiff | Color difference based on CIE94/CIE2000 standard |

| Patch 1 $\Delta E = 20.2$    | Patch 2 $\Delta E = 22.6$                                                  | Patch 3 $\Delta E = 27.3$     | Patch 4 $\Delta E = 20.4$         | Patch 5 $\Delta E = 23.1$     | Patch 6 $\Delta E = 18.3$  |
|------------------------------|----------------------------------------------------------------------------|-------------------------------|-----------------------------------|-------------------------------|----------------------------|
| Patch 7<br>$\Delta E = 16.1$ | $\begin{array}{l} {\rm Patch} \; 8 \\ {\Delta {\rm E}} = 28.9 \end{array}$ | Patch 9 $\Delta E = 23.6$     | Patch 10 $\Delta \mathrm{E}=24.7$ | Patch 11<br>$\Delta E = 15.2$ | Patch 12 $\Delta E = 14.1$ |
| Patch 13 $\Delta E = 33.3$   | Patch 14 $\Delta E = 22.5$                                                 | Patch 15<br>$\Delta E = 21.9$ | Patch 16 $\Delta E = 23.5$        | Patch 17<br>$\Delta E = 24.2$ | Patch 18 $\Delta E = 28.6$ |
| Patch 19 $\Delta E = 5.7$    | Patch 20 $\Delta E = 13.7$                                                 | Patch 21<br>$\Delta E = 20.2$ | Patch 22 $\Delta E = 22.9$        | Patch 23<br>$\Delta E = 21.8$ | Patch 24 $\Delta E = 17.0$ |

#### Measured vs Reference Color Difference



Original vs Local Color Difference

### **Image Quality Metrics**

### **Full Reference Techniques Function**

| immse                            | Mean squared error                                      |  |  |
|----------------------------------|---------------------------------------------------------|--|--|
| psnr                             | Peak signal-to-noise                                    |  |  |
| ssim                             | Structural similarity metric                            |  |  |
| multissim                        | MS-SSIM index for image quality                         |  |  |
| multissim3                       | MS-SSIM index for volume quality                        |  |  |
| No-Reference Techniques Function |                                                         |  |  |
| niqe                             | Naturalness Image Quality Evaluator                     |  |  |
| brisque                          | Blind Reference-less Image Spatial Quality<br>Evaluator |  |  |
| piae                             | Perception-based Image Quality Evaluator                |  |  |

Original Image: PIQE score = 24.8481 | Noisy Image: PIQE score = 72.3643 | Blurred Image: PIQE score = 85.7362



PIQE No-Reference Techniques

### Enhance Low Light Image using Dehazing Algorithm

Using haze removal techniques to enhance low-light images comprises three steps:

- Step 1: Invert the low-light image
- Step 2: Apply the haze removal algorithm to the inverted low-light image
- Step 3: Invert the enhanced image





### Neural Style Transfer Using Deep Learning







# High Dynamic Range (HDR) Images



makehdr

Create the HDR from the set of LDR





tonemap

Convert HDR to LDR



Support EXR and HDR files

### **Increase Image Resolution**







High-Resolution Results Using Bicubic Interpolation (Left) vs. VDSR (Right)



Single image super-resolution (SISR) using a verydeep super-resolution (VDSR) neural network

### **Face Detection and Tracking**

- Figure out where people are to make localized adjustments (accentuate the person and minimize the background, auto-focus assistance)
- Develop the system in three steps:
  - Step 1: Detect a face
  - Step 2: Identify facial features to track
  - Step 3: Track the face



Detected features





### **Pose Estimation**

- Identify the location of people in an image and the orientation of their body parts.
- OpenPose is a multi-person human pose estimation algorithm that uses a bottom-up strategy.
- A bottom-up strategy first identifies body parts in an image, such as noses and left elbows, and then assembles individuals based on likely pairings of body parts.



## Multi-Object Tracking and Human/Hand Pose Estimation

- **Detect** people in each video frame using a YOLO v4
- Track the detected people across frames using trackerGNN uses linear Kalman filter
- Identify keypoints and estimate body/hand poses using HRNet







## Agenda



What is Automated Visual Inspection?

"Automated optical inspection is the **image-based** or **visual inspection** of manufacturing parts where a camera scans the device under test for both **failures** and **quality defects**"

**Automated Defect Detection** 

Machine Vision

**Optical Inspection** 

**Automated Inspection** 

### **Typical Visual Inspection System**

**Inspection Cameras** 





Image Analysis





**Defective Parts** 

### **AI-based Visual Inspection Workflow**

### **Data Preparation**



Data cleansing and preparation



Model design and tuning

**AI Modeling** 



Integration with complex systems

**Simulation & Test** 



Embedded devices

**Deployment** 



Human insight





Hardware accelerated training



- x System verification and validation -~

System simulation



Enterprise systems



Edge, cloud, desktop

### **Apps Accelerate Workflow**







### **Data Labeling**

### Image Labeler



#### Video Labeler



### Signal Labeler





Augmented Dataset

MATLAB EXPO

N times as much data

Data augmentation allows building more complex and more robust models

### Data Augmentation using Generative Adversarial Networks (GANs)



Images of digits generated from noise. File Exchange: Conditional GAN (Generative Adversarial Network) with MNIST

### **Architectures for Visual Inspection**

### **Convolutional Neural Networks**



### **YOLO – Object Detector**





Encoder

ENCODING

256 features

con

Hidden laver (2)

512 neurons

Hidden layer (1) 1024 neurons

#### **Deep Autoencoder Fully Convolutional Data Description** (FCDD) – Anomaly Detector

С

 $\bigcirc$ 

 $\bigcirc$ 

О

С

00 ŝ  $\bigcirc$ 

 $\bigcirc$ 

 $\bigcirc$ 

Ó

Dense  $\bigcirc$ 

# FCDD Upsampling

Output (Input image reconstructed)

### **Generative Adversarial Network**



### Visual Inspection Examples



# Visual Inspection Support package

Computer Vision Toolbox Automated Visual Inspection Library

- Anomaly detector
- Parameter optimization
- Visualization and evaluation tools
- Dedicated examples
  - <u>Detect Image Anomalies Using Pretrained ResNet-18</u>
    <u>Feature Embeddings</u>
  - <u>Classify Defects on Wafer Maps Using Deep Learning</u>
  - <u>Detect Image Anomalies Using Explainable One-Class</u>
    <u>Classification Neural Network</u>



# Deploy to Enterprise Infrastructure or Embedded Systems

AI models in MATLAB and Simulink can be deployed on enterprise systems or the cloud, or on embedded devices.



32





### Wuhan JINGCE Electronic: Rapid Development of Model-Based Display Measuring Instruments

#### Challenge

Rapidly develop high-precision measurement instruments for display devices based on complex image processing and deep learning, measure and debug a series of optical parameters such as flicker, chromaticity and color uniformity, and spectrum.

#### **Solution**

Use MATLAB to develop image processing algorithms, create and train neural networks, and use GPU Coder for automatic code generation to quickly implement productization.

#### Result

- The automatically generated CUDA code is 23.6% faster than the manually optimized code
- From algorithm prototype to product prototype, the development time is shortened by 35%~50%
- Product Engineering Quality Assurance (Gold Reference, SIL, PIL)
- Simplified processes and smaller teams, 30% reduction



#### 精测电子用于显示屏高精量测的谱系化产品



# Thank you



© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

