

Implementing Video Image Processing Algorithms on FPGA

Video Image Processing and Computer Vision

Video Image Processing

- Video in and out
- Gamma correction
- Color balancing
- Noise removal
- Image sharpening

Implementing Image Pipeline in a Processor based on Da Vinci™ Technology

Computer Vision

- Feature matching, and extraction
- Object detection and recognition
- Object Tracking and motion estimation
- Dynamic resolution scaling
- Focus assessment

Workflow for Video Image Processing

Challenges in Design and Prototyping for Video and Image

Modeling video image processing systems

- ✓ Pixel-streaming behavior
- Code generation ready model
- Prototyping and concept proofing
- ✓ Technology independent code

Hardware Engineer

Prototyping and Designing FPGA and ASIC for video and image processing algorithms

- ✓ Portable, readable and efficient IP Cores
- Flexible architecture and controllable latency
- ✓ FPGA-in-the-loop testing using ML and SL as frame based test bench

Vision HDL Toolbox

Design and prototype video image processing systems

- Modeling hardware behavior of the algorithms
 - Pixel-based functions and blocks
 - Conversion between frames and pixels
 - Standard and custom frame sizes
- Prototyping algorithms on hardware
 - (With HDL Coder) Efficient and readable HDL code
 - (With HDL Verifier) FPGA-in-the-loop testing and acceleration

Pixel Based Video Image Algorithms

Analysis & Enhancement

Edge Detection, Median Filter

Conversions

- Chroma Resampling, Color-Space Converter
- Demosaic Interpolator, Gamma Corrector, Look-up Table

Filters

Image Filter, Median Filter

Morphological Operations

- Dilation, Erosion,
- Opening, Closing

Statistics

- Histogram
- Image Statistics

I/O Interfaces

 Frame to Pixels, Pixels to Frame, FIL versions

Utilities

- Pixel Control Bus Creator
- Pixel Control Bus Selector

A Complete Solution for Embedded Vision

A Complete Solution for Embedded Vision

Product	Capabilities
Vision HDL Toolbox	Design and simulate image processing, video, and computer vision systems for FPGAs and ASICs
HDL Coder	Provide RTL code and testbench generation capability for the functions and blocks in Vision HDL Toolbox
HDL Verifier	Provide FPGA-in-the-loop capability for Vision HDL Toolbox
Computer Vision System Toolbox	Provide frame based computer vision functions and blocks as well as image and video I/O capability
Image Processing Toolbox	Provide image processing and analysis functions

Model-Based Design For Embedded Vision

From Concept to Production

- Build behavioral model for fast simulation and testing
- Convert to prototype model for targeting hardware

- Generate efficient code
- Explore and optimize implementation tradeoffs

- Automate regression testing
- Detect design errors
- Support certification and standards

ROI: Customer Adoption Of Model-Based Design

Time spent on FPGA implementation

- Shorter implementation time by 48% (total project 33%)
- Reduced FPGA prototype development schedule by 47%
- Shorter design iteration cycle by 80%

Demo: Enhanced Edge Detection

Enhanced Edge Detection

Streaming Pixel Interface

Full Frame vs Pixel Stream

Streaming Pixel Interface

Full Frame vs Pixel Stream

Frame To Pixels and Pixels To Frame

Examples: Starting Points for Your Models

▼ Simulink Examples

▼ Matlab Examples

Pixel-Streaming Design in MATLAB

Uses: Matlab, Computer Vision System Toolbox

Accelerate a Pixel-Streaming Design Using MATLAB Coder

Uses: Matlab, Computer Vision System Toolbox, Matlab Coder

Enhanced Edge Detection from Noisy Color Video

Uses: Matlab, Computer Vision System Toolbox, Matlab Coder

Image Filtering

Keywords: Median Filter, Image Filter, PSNR

Median Filter

Image Filtering Using Vision HDL Blocks Verification imageMatrix matrixIn Ref Ref Out Image Source HDL Full-Frame Behavioral Model pix el pix ell n pixelOut **▶** pix el frame IframeFrame To Pixels PixelsTo Frame Info v alidOut ▶ ctrlin ctrl ctrlOut Frame To Pixels Pixel-Stream HDL Model Pixels To Frame pixel pixel ▶pixel pixel Median Filter pix ell n Image Filter pixelOut 2 ctrl ► ctrl ctrl ► ctrl ctrlln drlOut

Image Filter

Gamma Correction Example

Keywords: Gamma, PSNR

Gamma Correction

Copyright 2014 The MathWorks, Inc.

Histogram Equalization

Keywords: Histogram, Linear Equalization, External Frame Delay

Edge Detection and Image Overlay

Keywords: Sobel, Align Video, Alpha Mix, PSNR

Edge Detection with Impaired Frame

Keywords: Sobel, Align Video, Alpha Mix, PSNR

Edge Detection and Image Overlay with Impaired Frame

Align Video is implemented as a variant subsystem.

To simulate using the FirstVersion variant, type VERSION=1 at MATLAB prompt.

To simulate using the SecondVersion variant, type VERSION=2 at MATLAB prompt.

Multi-Zone Metering

Keywords: ROI, Image Statistics, Mean

HDL Coder

Provides VHDL and Verilog code generation for MATLAB and Simulink

```
9);
9);
FILTER;

i);
ls that differ more than th_pix
Hz == ACC_STATE && validFilter == 1
th_pix_in
di = 0;
countAddi = 0;
elseif deltai < -th_pix_in
deltaAddi = 0;
countAddi = 0;
else
deltaAddi = deltai;
countAddi = 1;
end
Index = i;

MATLAB Code
```

10X more concise

HDL Coder

60% reduction in time to produce a working prototype

HDL Products Key Features

- Code Generation
 - Target-independent HDL Code
 - IEEE 1376 compliant VHDL®
 - IEEE 1364-2001 compliant Verilog®
- Verification
 - Generate HDL test-bench
 - Co-simulate with ModelSim and Incisive
- Design automation
 - Synthesize using integrated Xilinx and Altera synthesis tool interface
 - Optimize for area-speed
 - Program Xilinx and Altera boards

MATLAB® and Simulink® Algorithm and System Design

> HDL Coder HDL Verifier

HDL

FPGA

ASIC

HDL Coder: Key Features and Options

Area Optimizations

- Simulink
 - Streaming
 - Sharing
 - Line buffers as RAMs
 - RAM Fusion
 - Architecture Flattening
- MATLAB
 - RAM Mapping
 - Loop Streaming
 - Resource Sharing
 - CSD/FCSD

Speed Optimizations

- Simulink
 - Input/Output pipelining
 - Distributed Pipelining
 - Hierarchical Dist. Pipelining
 - Constrained Pipelining
 - Back-Annotation
- MATLAB
 - Input/Output pipelining
 - Distributed pipelining
 - Loop Unrolling

Validation and Verification

- Automatic Delay Balancing
- Validation model generation

Hardware Design Solution:

Identifying the critical path

Integrating with P&R Timing Analysis

Critical Path highlighting:

- Visual representation of critical path in your model
- Easier to identify bottlenecks of your model

Meeting Timing Constraint

Distributed Pipelining

Distributed Pipelining

Speed Optimization

- Distributed pipelining (model retiming)
- Automatic delay compensation where needed
- Constrained retiming gives you more influence

Clock-Rate Pipelining

Critical Path Estimation

Meeting Resource Constraint

Area Optimization

Hardware Design Solution:

Resource Sharing and Streaming

Resource Sharing and Streaming

Area Optimization

- Easily share <u>multipliers</u> and <u>identical subsystems</u>
- Direct feedback through resource utilization report
- Prove correctness through validation models

Traceability Between Model and Code

Resource Utilization Estimation

Integrating Legacy HDL Code

Vivado IP Core Generation

- Generate sharable and re-usable Vivado IP core from MATLAB/ Simulink HDL Workflow Advisor
- Support AXI4 interfaces to connect FPGA IP core to Zynq ARM processor
- Generate IP core report as IP Product Guide

Vivado IP Integrator Support for Zynq

- Integrate Xilinx Vivado IP
 Integrator tool flow into HDL
 Workflow Advisor
- Insert the generated IP core into Vivado Zynq system design
- Build and Program Zynq board

Altera IP Core Generation + QSys Integration R2014b

- Generate sharable and re-usable Altera
 IP from MATLAB/ Simulink HDL WFA
- Support AXI4 interfaces to connect FPGA
 IP to Altera SoC ARM processor
- Generate IP core report as IP Data Sheet
- QSys integration for rapid prototyping

Backup

CVST and VHT, complimentary products

Product details

	VHT	CVST
Image Processing	Pixel based	Frame based
Workflow	System prototyping	Algorithm design
Algorithms	Image filtering Color space conversion Edge detection Statistics & histogram Morphological operations	(Most of the VHT algorithms, plus) Object detection & tracking Feature extraction and matching Stereo vision Camera calibration Image registration
I/O	Frame-to-pixel Pixel-to-frame FIL	File I/O Video display
Code gen	HDL (with HDL Coder)	C (with ML Coder or SL Coder)

MBD Workflow for Embedded Vision (video)

MBD workflow

- Build behavior model with CVST blocks and simulate
- 2. Build prototyping model with VHT blocks and simulate
- Generate HDL code using HDL Coder
- Run HDL code on FPGA and run testbench in SL (FIL)