

MATLAB® SIMULINK®

Stateflow®

Modeling Safety-Critical Logic with Stateflow

Prepared by: Elisabeth O'Brien

© 2008 The MathWorks, Inc.

MathWorks Aerospace and Defence Conference '08

Agenda

- Stateflow and Simulink®
- Why use Stateflow?
- An example
 - The requirements
 - Demo: Aircraft thrust reverser modeled with Stateflow
- Conclusion

How does Stateflow work with Simulink?

Simulink is used to respond to **continuous** changes in dynamic systems.

Stateflow is used to respond to **instantaneous** changes in dynamic systems.

Aerodynamics fault detection

Propulsion system liftoff stages

Robot kinematics operation modes

Why Stateflow

- Simulink with Stateflow is the only tool in the world that combines
 - Dynamic system simulation
 - State charts and control logic
- Intuitive graphical programming environment
- Stateflow semantics are deterministic (predictable & consistent)
- Powerful integration with verification, validation & test tools

Thrust Reversers Should not be Deployed During Flight

Officials Say Thrust Reverser Shut Off Before Brazil Crash

 SAO PAULO, Brazil — One of the two thrust reversers on an airliner carrying 186 people that crashed in a fireball was turned off when the plane landed, the jet's owner said, as officials tried to determine why it raced down a runway instead of slowing down.

Lauda Air B767 Accident Report SYNOPSIS

 The physical evidence at the crash site showed that the left engine thrust reverser was in the deployed position.

Thrust Reverser Deployment Requirements

- The following requirements shall be met prior to deploying the thrust reversers:
 - Four weight on wheels sensors
 - All wheels need to be on the ground
 - Two wheel speed sensors
 - Wheels must be spinning fast enough
 - Two airspeed limit sensor
 - Plane must be traveling slow enough
 - Four throttle position sensors
 - Throttle must be in correct position

Summary

Use Stateflow to:

- Design and simulate state machines and control logic
- Respond to instantaneous changes in dynamic systems
- Describe logic in a natural and understandable form
- Automatically generate portable C code, with the addition of Stateflow Coder™