

AI for Simulink Users

Bill Chou, Product Manager – Coder Products Bernhard Suhm, Product Manager – Machine Learning Emmanouil Tzorakoleftherakis, Product Manager – Controls Systems

© 2020 The MathWorks, Inc.

Today's Objective: How to Build AI Functionality into your Systems

Today's Objective: How to Build AI Functionality into your Systems

Deep Learning in Simulink

Demo: Lane and vehicle detection

Traditional Machine Learning in Simulink

Demo: Human activity recognition

Why should I integrate my AI components into Simulink?

Learning Algorithms Are Driving the Al Megatrend

AI Examples: Machine Learning for Fault Identification

Why Machine Learning over traditional quantitative/qualitative methods?

- Higher accuracy
- Process may be challenging or impossible to model

AI Examples: Deep Learning for Vehicle Detection

Why Deep Learning over traditional Computer Vision?

- No feature engineering
- Higher accuracy

MathWorks[®]

Additional AI Examples

9

Systems Complexity Is Increasing

Model-Based Design and AI can help build complex systems

Al-driven system design workflow

📣 MathWorks[®]

Integrating AI Models into Simulink

AI for algorithm development

- Simulate for system-level testing
- Verify system requirements
- Deploy overall design to CPU, GPU, ECU, FPGA or a mix of targets

AI for environment modeling

- Speed up high-fidelity model
- Use data-driven model where mathematical modeling is challenging
- Enable HIL tests for above
- Share component with non-experts in a particular modeling domain or tool

MathWorks[®]

Today's Objective: How to Build AI Functionality into your Systems

Traditional Machine Learning in Simulink

Demo: Human activity recognition

- Leverage pre-defined networks & pretrained networks
- Visually create networks to enable faster design
- Find optimal network using experiments
- Explain and visualize how a network works
- Interoperate with other frameworks

- Leverage pre-defined networks & pretrained networks
- Visually create networks to enable faster design
- Find optimal network using experiments
- Explain and visualize how a network works
- Interoperate with other frameworks

	- 0
Auto Arrange LAYOUT ANALYSIS EXPORT	
gner Data Training	PROPERTIES
	Number of layers 144 Number of connections 170 input type Image Output type Classification
_===	V OVERVIEW
	Auto Arrange Lavour Analyze Export gner Data Training

ep Learning Network Analyzer					- 0
work from Deep Network Designer 144 🗓			0 🔺 0 (
ysis date: 09-Jul-2020 16:27:39				layers	warnings erro
ANALYSIS RESULT					
data		Name	Туре	Activations	Learnables
oonv1-7		data 224×224×3 images with 'zerocenter' normalization	Image Input	224×224×3	-
conv1-r	2	Conv1-7x7_s2 64 7x7×3 convolutions with stride [2 2] and padding [3 3 3 3]	Convolution	112×112×64	Weights 7×7×3×64 Bias 1×1×64
• pool1-3	3	conv1-relu_7x7 ReLU	ReLU	112×112×64	-
pool1-n	4	pool1-3x3_s2 3×3 max pooling with stride [2 2] and padding [0 1 0 1]	Max Pooling	56×56×64	-
oonv2-3	4	pool1-norm1 cross channel normalization with 5 channels per element	Cross Channel Nor	56×56×64	-
o conv2-r	e	Conv2-3x3_reduce 64 1×1×64 convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	56×56×64	Weights 1×1×64×64 Bias 1×1×64
conv2-sxs		conv2-relu_3x3_reduce	ReLU	56×56×64	-
conv2-n	8	conv2-3x3 192 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1]	Convolution	56×56×192	Weights 3×3×64×192 Bias 1×1×192
pco12-3	6	conv2-relu_3x3 ReLU	ReLU	56×56×192	2
inceptio		Conv2-norm2 cross channel normalization with 5 channels per element	Cross Channel Nor	56×56×192	•
• inceptio• inceptio• inceptio• inceptio		1 pool2-3x3_s2 3×3 max pooling with stride [2.2] and padding [0.1.0.1]	Max Pooling	28×28×192	
Rama Rama Rama		a insertion to tut radius	Convolution	202005	

- Leverage pre-defined networks & pretrained networks
- Visually create networks to enable faster design
- Find optimal network using experiments
- Explain and visualize how a network works
- Interoperate with other frameworks

PERIMENT MANAGER									_
W Save Layout FILE ENVIRONMENT RUN									
FILE ENVIRONMENT RUN	top Trai	hing Confusion ot Matrix -	Filter Export						
PERIMENT BROWSER Q	Basolir	Tuning X Ba	eline Tuning Result1 x						
DigitsClassifier	- Duson	o runnig All Du							
- A Baseline Establishment	- Resu	It Details							
Sweep Initial Learning Rate Baseline run Asseline Tuning Result1 (Running)		Baseline Tuning 2/7/2020, 12:53:36 PM (View Experiment Source)			Complete 7 ▲ Stopped 0 ❶ Erro O Rumning 1 ☱ Queued 8 X Carr			7/16 Tria r celed	
Larger Initial Learning Rate Range Sweep Learning Rate Conv Size and	1								
Add Conv-Batch-ReLu Banks	Trial	Status	Progress	Elapsed Time	myInitialLearn	convFilterSize	Training Accu	Training Loss	Validation
Vary Filter Size of First Conv2D Lave	1	 Complete 	100.0%	0 hr 0 min 16 sec	1.0000e-6	3.0000	12.5000	2.6441	
Train Validation Split Study	2	 Complete 	100.0%	0 hr 0 min 15 sec	1.0000e-5	3.0000	25.7813	2.1228	
	3	 Complete 	100.0%	0 hr 0 min 14 sec	0.0001	3.0000	64.8438	1.0878	
	4	 Complete 	100.0%	0 hr 0 min 16 sec	0.0005	3.0000	90.6250	0.4648	
	5	Complete	100.0%	0 hr 0 min 15 sec	1.0000e-6	4.0000	11.7188	2.4967	
	6	Complete	100.0%	0 hr 0 min 15 sec	1.0000e-5	4.0000	23.4375	2.1213	
	7	Complete	100.0%	0 hr 0 min 17 sec	0.0001	4.0000	72.6563	1.0283	
	8	O Running	41.0%	0 hr 0 min 6 sec	0.0005	4.0000			
	9	E Queued	0.0%		1.0000e-6	5.0000			
	10	E Queued	0.0%		1.0000e-5	5.0000			
	11	E Queued	0.0%		0.0001	5.0000			
	12	E Queued	0.0%		0.0005	5.0000			
	13	E Queued	0.0%		1.0000e-6	6.0000			
	14	E Queued	0.0%		1.0000e-5	6.0000			
	15	E Queued	0.0%		0.0001	6.0000			
	16	E Queued	0.0%		0.0005	6.0000			

80 Iteration

100

120

140

20

40

60

- Leverage pre-defined networks & pretrained networks
- Visually create networks to enable faster design
- Find optimal network using experiments
- Explain and visualize how a network works
- Interoperate with other frameworks

📣 MathWorks[.]

Deep Learning Toolbox

- Leverage pre-defined networks & pretrained networks
- Visually create networks to enable faster design
- Find optimal network using experiments
- Explain and visualize how a network works
- Interoperate with other frameworks

Deep Learning Networks

- ResNet
- Inception v3
- MobileNet v2
- GoogLeNet
- VGG
- SegNet
- DeepLab v3+
- ...

- YOLO v2
- SSD

- LSTM
- BiLSTM

Deep Learning Networks

Image Classifier

Predict

Deep Learning Networks in Simulink

📣 MathWorks[®]

Highway Lane Following Model

Lane and Vehicle Detection

Workflow:

- Run simulation on desktop CPU
- Run simulation on desktop GPU and generate CUDA code
- Generate CUDA code and run on Jetson AGX Xavier

📣 MathWorks

(1) Run Simulation on Desktop CPU

(2) Run Simulation on Desktop GPU and Generate CUDA code

📣 MathWorks

(3) Generate CUDA Code and Run on Jetson AGX Xavier

Lane and Vehicle Detection

- I) Running on CPU & GPU
- ~7X faster running generate code on desktop GPU vs CPU
- 3) Generate CUDA code and run on Jetson AGX Xavier

Today's Objective: How to Build AI Functionality into your Systems

Deep Learning in Simulink

Demo: Lane and vehicle detection

Traditional Machine Learning in Simulink

Demo: Human activity recognition

What to use? Deep Learning vs. Machine Learning

	Deep Learning	Machine Learning	
Popular among Practitioners:	Convolutional Neural Network (CNN)	Linear Models - Decision Trees	
	Long-Short Term Memory (LSTM)	Support Vector Machines	
	Generic Adversarial Network (GAN)	Gaussian Process Regression	
Types of data:	Images / Video Signal - Text	Sensor Numeric	
Requirements:	Lots of (labelled) data	Moderate amounts of data	
	Performance computing / GPU		

MathWorks[®]

How to Integrate Machine Learning?

Built-in Machine Learning blocks R2020b Simulink Library Browser X label label [1x6] 🗇 🗇 Enter search term 🗸 🗛 🕶 🔀 🕶 🚍 🕶 🛥 🍞 Xnew [1x6] **Statistics and Machine Learning Toolbox** > SoC Blockset ~ > SoC Blockset Support Package for Xilir 000000 Stateflow (\cdot) Statistics and Machine Learning Toolbi Classification Regression Classification Regression > System Identification Toolbox > UAV Toolbox > Vehicle Dynamics Blockset < >

MATLAB Function Blocks

- Preprocessing
- **Feature Extraction**

ew		-	2 	re 2 2
	Ŷ	predict		score
•	Block Param	neters: Predict using Classificati	on SVM	
SVM Classification (mas	k) (link)			
Classify observations us	ing support vector m	nachine (SVM) clas	sifier	
Trained Machine Learnir Kernel: Linear	ng Model:			
Score Transform: Log	it			
Standardize: Yes				
		lain Data Types		
Parameters				
Trained Machine Learr	ing Model svmMdl			
Show output Score				
			OK Cancel	Help Apply

Human Activity Learning using Smartphones

📣 MathWorks

Demo: Human Activity Recognition

Key Takeaway: Increased performance and functionality

Integrate AI into Simulink models for Complex Systems

- Test overall design in simulation
- Implement using code generation

Build AI models using Interactive Apps and Examples

- in Deep Learning / Statistics and Machine Learning Toolboxes
- ... Or integrate models developed by your colleagues