
Requirement Based
Functional Test Cases

Test Cases identified
using Formal Methods

Simulink Test

Design constraints
(Equivalence classes, Boundary
Values, Derived Requirements)

Simulink Coverage

SOFTWARE
MODEL

SYSTEM
SPECIFICATION

+

Model Coverage Analysis

Model in the Loop (MIL) Functional Testing

Simulation Test
Cases Traceability

Design Error Detection and Property Proving

Simulation, Processor and Hardware in the Loop Test Cases Traceability

Polyspace Code Prover

Coding Standards

Simulink Test

Autom
atic Code G

eneration
(and AU

TO
SAR ARXM

L file generation) De
te

ct
 U

ni
nt

en
de

d
Fu

nc
tio

n
(S

ou
rc

e
Co

de
 tr

ac
ea

bi
lit

y)

SI
L

an
d

PI
L

Te
st

 C
as

es
 T

ra
ce

ab
ili

ty Prove Absence of Run-Time Errors

Software in the Loop (SIL) Testing
(Optional)

Model Standard Checks

ISO 26262 Workflow with Qualified Code Generation

Reuse of the Simulation Test Cases
Adding EOC specific Test Cases

Effort Distribution in Traditional Development Workflows

Design & Reqs
Validation

Software
VerificationSpecifications

Implementation
(C, C++, HDL, …)

Effort Distribution in Model-Based Design Workflows

Specifications

Design & Reqs
Validation

Implementation
(C, C++, HDL, …)

Software
Verification

Automatic Test
Case Generation

Coder Settings

Verification Objectives Settings

Testing Environment Settings

Code Standards Checks (MISRA,…)

Simulation Cases Results

EXECUTABLE
OBJECT
CODE

Processor and Hardware in the Loop (PIL and HIL) Testing

Simulink Coverage
Code Coverage

Coverage Metrics

Testing Environment Settings

Design -M
ATLAB, Sim

ulink, Stateflow
, Fixed-Point D

esigner, Pow
ertrain Blockset, …

SOURCE
CODE

IEC Certification Kit

Supported coverage types:
• Decision coverage
• Condition coverage
• MC/DC
• Lookup table coverage
• Signal range coverage

SIL Test Cases Results

Test Cases Traceability

Note: Formal Methods allow to detect errors in the Model including dead logic, integer
overflow, division by zero, and violations of design properties and assertions, out-of-
bounds array access and certain other run-time errors in source code

Simulink Requirements

Customer quotes claim
a total effort reduction

of 30-50%

Unqualified Tools

Qualified Tools

Configuration Inputs

Artifacts

Simulink Design Verifier

Simulink Requirements
Requirements Authoring

Typically, both an executable model of the control software (e.g. a functional model) and a model of the
surrounding system (e.g. a vehicle model) and its environment (e.g. an environment model) are created
early in the development cycle and are simulated together. … While the vehicle/environment model is
gradually replaced by the real system and its real environment, the functional model can serve as a
blueprint for the implementation of embedded software on the control unit through code generation.

ISO 26262 is rooted
in modeling and

simulation

IEC Certification Kit

Embedded Coder

AUTOSAR Authoring Tool
ARXML Interface files

(Optional)

Optimizing
Compiler

ISO
 26262-6.7: Table 2 —

N
otations for softw

are architectural design
ISO

 26262-6.7: Table 3 —
Principles for softw

are architectural design
ISO

 26262-6.7: Table 4 —
M

echanism
s for error detection at the softw

are architectural level
ISO

 26262-6.7: Table 5 —
M

echanism
s for Error H

andling at the Softw
are A

rchitectural Level
ISO

 26262-6.7: Table 6 —
M

ethods for Verification of Softw
are A

rchitectural D
esign

ISO
 26262-6.8: Table 7 —

N
otations for Softw

are U
nit D

esign

ISO 26262-6.9: Table 10 — Methods for software unit testing
ISO 26262-6.10: Table 13 — Methods for software integration testing

ISO 26262-8.3: Confidence in Use of the Software Tools

ISO 26262-6.7: Table 4 – Mechanisms for error detection at the software architectural level
ISO 26262-6.7: Table 6 – Methods for the verification of the software architectural design (Formal Verification)
ISO 26262-6.9: Table 9 – Methods for Verification of Software Unit Design and Implementation (Formal Verification)

Simulink Check
Modelling Standards

Model Quality Metrics

Code Quality Metrics

ISO 26262-6.9: Table 12 — Structural coverage metrics at the Software Unit Level
ISO 26262-6.10: Table 15 — Structural coverage metrics at the software architectural level

ISO 26262-6.9: Table 12 — Structural coverage metrics at the Software Unit Level
ISO 26262-6.10: Table 15 — Structural coverage metrics at the software architectural level

ISO 26262-6.9: Table 11 — Methods for deriving test cases for software unit testing
ISO 26262-6.10: Table 14 — Methods for deriving test cases for software integration testing

ISO 26262-6.11: Table 16– Test environments for conducting the software safety requirements verification

ISO 26262-6.9: Table 10 — Methods for software unit testing
ISO 26262-6.10: Table 13 — Methods for software integration testing

ISO 26262-6.5: Table 1 – Topics to be Covered by Modeling and Coding Guidelines
ISO 26262-6.7: Table 3 – Principles for software architectural design
ISO 26262-6.8: Table 8 – Design principles for software unit design and implementation
ISO 26262-6.8: Table 9 – Methods for Verification of Software Unit Design and Implementation

ISO
 26262-6.7: Table 6 –

M
ethods for Verification of Softw

are A
rch. D

esign (Prototyping)
ISO

 26262-6.8: Table 8 –
D

esign principles for softw
are unit design and im

plem
entation

IS
O

 2
62

62
-6

.8
: T

ab
le

 9
 –

M
et

ho
ds

 fo
r V

er
ifi

ca
tio

n
of

So

ftw
ar

e
U

ni
t D

es
ig

n
an

d
Im

pl
em

en
ta

tio
n

ISO 26262-6.7: Table 4 – Mechanisms for error detection at the software architectural level
ISO 26262-6.7: Table 6 – Methods for the verification of the software architectural design (Formal Verification)
ISO 26262-6.9: Table 9 – Methods for Verification of Software Unit Design and Implementation (Formal Verification)

ISO 26262-6.5: Table 1 – Topics to be Covered by Modeling and Coding Guidelines
ISO 26262-6.7: Table 3 – Principles for software architectural design
ISO 26262-6.8: Table 8 – Design principles for software unit design and implementation
ISO 26262-6.8: Table 9 – Methods for Verification of Software Unit Design and Implementation

Polyspace Bug Finder

	Slide Number 1

