
AIAA Modeling and Simulation Technologies Conference and Exhibit AIAA-2010-7776
2-5 Aug 2010, Sheraton Centre Toronto, Toronto, Ontario, Canada

Copyright © 2010 by MathWorks, Published by the American Institute of Aeronautics and Astronautics, Inc., with permission
1

Integrating Simulink with other Simulation Environments

Mark McBroom1
MathWorks Inc., Novi, MI

Tom Erkkinen2
MathWorks Inc., Novi, MI

Matt Behr3
MathWorks Inc., Natick, MA

Modeling, simulation, and code generation are vital technologies for developing
aerospace systems. The ability to integrate models from commercial off-the-shelf (COTS)
tools into large software programs used as corporate or program-wide simulation
environments is becoming increasingly important. Techniques for generating code from
Simulink® models and integrating that code into corporate simulation environments are
described herein. The techniques are based on actual aerospace use cases, and examples are
shown using MathWorks products [1].

I. Introduction
Simulink® software is a robust modeling platform capable of simulating systems containing continuous time

dynamics, multiple discrete sample rates, and asynchronous events. It can model a subsystem, a system, or systems
of systems. There are, however, situations in which legacy systems mandate or modeling requirements necessitate
the use of other simulation environments or frameworks in addition to Simulink.

This paper examines methods for integrating Simulink generated code into a code-based simulation
environment, which is typically written in a traditional programming language such as C, C++, or FORTRAN.
While the topics discussed also apply to integration with COTS simulation tools other than Simulink, this is not the
paper’s focus. Similarly, while architectures for distributed computer simulation systems such as High Level
Architecture (HLA) are mentioned, such architectures are also not part of the paper’s focus.

We examine the various forms simulation environments can take, technical challenges in getting multiple
environments to work together, and features of Simulink that enable integration. This paper is based on experiences
drawn from working with many aerospace companies that have successfully integrated Simulink into their corporate
simulators.

II. Factors Affecting the of Choice of Simulation Environments
The primary reasons for requiring the use of multiple simulation environments are history, mandate, and

modeling requirements.

Due to the complexity of the systems being developed and the difficulty in testing them, simulation has been a

key part of aerospace systems development for decades. Thus, organizations often have simulation environments at
their disposal from previous programs. Legacy simulation environments offer several benefits: they have been
proven on real programs, people within the organization are familiar with them, and they have capabilities that
support the organization’s specific development needs and processes.

However, legacy systems also have drawbacks. First, they are often costly to maintain. Second, as senior

engineers retire, the organizational knowledge required to operate legacy systems can dissipate. Third, organizations
are often reluctant to update these tried-and-true systems to take advantage of more modern technology. For

1 Manager, Pilot Engineering
2 Manager, Code Generation and Certification Technical Marketing
3 Manager, Aerospace and Defense Industry Marketing

AIAA Modeling and Simulation Technologies Conference and Exhibit AIAA-2010-7776
2-5 Aug 2010, Sheraton Centre Toronto, Toronto, Ontario, Canada

Copyright © 2010 by MathWorks, Published by the American Institute of Aeronautics and Astronautics, Inc., with permission
2

example, many corporate simulators do not fully leverage multi-core computers and high performance computing
clusters.

Another factor driving the use of multiple simulation environments is mandate. Government agencies, for

example, are now relying more on simulation in the acquisition process. In these cases, contractors choose their
own internal development tools and processes but they also must deliver code to their customer that integrates into
the customer’s simulation framework. Other organizations are required to deliver code that integrates into theatre-
level or system-of-systems simulations. Rather than create additional simulations, such organizations can reuse their
design simulations and integrate them with system-of-systems simulations.

Finally, there are cases in which the primary simulation environment, in this case Simulink, is not the most

appropriate modeling tool. Examples include scene generators that model specific physical phenomenon such as
compressible fluid flow in high fidelity.

III. Integrated Simulation Environments
There are several ways to integrate simulations including HLA, which was developed specifically for distributed

simulation systems, and standard inter-process communication techniques and protocols including shared memory,
TCPIP/ UDP, or COM.

This paper focuses on code-based, static integration in which a component from Simulink (such as a digital filter

or actuator model) is designed, coded, compiled, linked, and invoked as defined by the master environment. An
example of this type of integration is described in the 2005 AIAA Paper “Enabling Interoperability of Native
Engineering Toolsets with System Simulations and Flight Software” [2].

One other approach is to integrate code from a simulation environment into Simulink, with Simulink serving as

the master, but this approach is well documented [3] and not discussed herein.

A. C vs. C++
The first thing to consider when integrating generated code is the language and structure of the custom

simulation environment. As shown in Fig. 1, the Real-Time Workshop® Embedded Coder™ product has three code
language options for generating code from Simulink: C, C++, and C++ (Encapsulated). The language and
architecture of the target simulation environment is the primary factor in selecting which option to use.

C language should be selected if the simulation environment is written in C, FORTRAN, or another procedural

language. The C++ option should be selected if the simulation environment is written in C++ but does not have
strong object-oriented architecture. The C++ option generates code similar to the C option but ensures that the
generated code is compatible with an ISO compliant C++ compiler. The C++ (Encapsulated) option generates a
C++ class for the Simulink model. This option should be used when the simulation environment is written in C++
and utilizes object-oriented architecture.

B. Tasking Execution Modes

Figure 1. Target language selection.

AIAA Modeling and Simulation Technologies Conference and Exhibit AIAA-2010-7776
2-5 Aug 2010, Sheraton Centre Toronto, Toronto, Ontario, Canada

Copyright © 2010 by MathWorks, Published by the American Institute of Aeronautics and Astronautics, Inc., with permission
3

There are two options for controlling the tasks generated from a Simulink model that will be called from the
target simulation environment. The most common is to generate code from a full Simulink model with an initialize
function, a terminate function, and one or more step functions, plus scheduling code.

Scheduling code is generated when the Simulink model contains blocks with different sample rates. When the

Tasking Mode is defined as Single-Tasking, a single step function will be created with scheduling code to manage
the execution of each sample rate. The simulation environment must be configured to execute the step function at
the same sample rate specified in the Simulink model. When the Tasking Mode is defined as Multi-Tasking, a step
function will be created for each sample rate in the Simulink model. Scheduling code will be generated to handle
the exchange of data between the step functions. The simulation environment must be configured to execute each of
the step functions at the sample rates specified in the Simulink model. The code shown in Fig. 2 contains the
function prototypes for a Simulink model with two sampling rates.

The second, less-common option for controlling tasks is to generate code for individual subsystems of a larger

Simulink model without scheduling code. For this option, the user is responsible not only for configuring the
simulation environment to execute the generated code at the proper rate(s), but also for writing additional code to
manage any data that is shared between different Simulink subsystems.

C. Function and File Partitioning
By default, Real-Time Workshop Embedded Coder will minimize the number of generated functions and source

files because function boundaries inhibit some code optimizations. However, users can control how the function and
source files are created and specify their names, as shown in Fig. 3. Users can also choose between an interface that
is based on global data and one that is based on function arguments.

Figure 2. Function interface for a multi-rate Simulink model.

AIAA Modeling and Simulation Technologies Conference and Exhibit AIAA-2010-7776
2-5 Aug 2010, Sheraton Centre Toronto, Toronto, Ontario, Canada

Copyright © 2010 by MathWorks, Published by the American Institute of Aeronautics and Astronautics, Inc., with permission
4

D. Function Signature Control
Target simulation environments usually have a documented application programming interface (API) for

integrating user code. To facilitate integration using such APIs, Real-Time Workshop Embedded Coder provides a
number of options for controlling the function signatures in the generated code.

C and C++

By default, Real-Time Workshop Embedded Coder generates the initialize, step, and terminate functions as void-
void functions with global data. Separate data structures are created for each category of data in a Simulink model.
The generated code allocates storage for each of these separate data structures, including variables created for
Simulink inports, outports, parameters, and states.

The user can override this default behavior and pass pointers to each of the structures as arguments to the

initialize, step, and terminate functions. In this case, the generated code is better suited for reuse because it does not
rely on global data; however, the user is responsible for declaring storage for each of the data structures.

The user can explicitly control the signature, or prototype of the initialize, step, and terminate functions by

specifying the function name, the argument names, passing mechanism (by reference or by value), and qualifiers.
The Real-Time Workshop Embedded Coder dialog box for controlling a function prototype is shown in Fig. 4. In
this example, the Simulink model has one inport and one outport. Instead of using the default void-void prototype,

Figure 3. Function and file partitioning.

AIAA Modeling and Simulation Technologies Conference and Exhibit AIAA-2010-7776
2-5 Aug 2010, Sheraton Centre Toronto, Toronto, Ontario, Canada

Copyright © 2010 by MathWorks, Published by the American Institute of Aeronautics and Astronautics, Inc., with permission
5

the user has configured the function prototype to pass the input as a constant pointer (const *) and use the Simulink
outport as the return value.

C++ (Encapsulated)

Similar capabilities for function signature control are available when generating C++ (Encapsulated) code. By
default, void-void methods are generated for the initialize, step, and terminate functions. The data structures for
inports, outports, parameters, and states are properties of the C++ class as shown in Fig. 5. Storage for the data
structures is created when the class is instantiated by the simulation environment.

Figure 4. Function prototype control and associated code.

AIAA Modeling and Simulation Technologies Conference and Exhibit AIAA-2010-7776
2-5 Aug 2010, Sheraton Centre Toronto, Toronto, Ontario, Canada

Copyright © 2010 by MathWorks, Published by the American Institute of Aeronautics and Astronautics, Inc., with permission
6

The user can override this default behavior and explicitly control the class name and prototype for the step

method. The step method name, argument names, passing mechanism (by reference or by value), and qualifiers are
fully configurable.

E. Data Interface Control
Users can configure the data interface based on the needs of the target simulation environment. For the C and

C++ code generation options, data can be scoped at the global, file, or function level. When scoped globally,
predefined storage classes are available, including const, volatile, exported global, imported global, #define,
structure, and bit-field. Get and set access methods, user-specific definitions, and C++ definitions are also available.

For the C++ (Encapsulated) option, all data are properties of the C++ class generated for the Simulink model.

The properties can be scoped as either private or protected. Access methods can be generated to provide a
controlled interface to the properties of the class.

F. Shared Library vs. Source Code Export
One way to integrate generated code into a target simulation environment is to compile and link the generated

source code with the target simulation environment. This technique involves configuring an Integrated
Development Environment or build script with the proper settings, such as include file paths, for example. If the
simulation environment is to be built on a different computer, then the files generated by Real-Time Workshop
Embedded Coder must be collected and copied there. The packNGo utility can be used to automate this step.

Alternatively, the user can generate the source code and then compile and link it into a shared library (for

example, a DLL or SO file). This option simplifies integration into the target simulation environment by reducing
the number of files that need to be collected and copied from system to system.

G. States and Continuous Time
Models containing no states or only discrete states are the simplest case. If the model is fully discrete, no solver

is needed. The discrete states can be fully contained within the generated code, or can be exposed if the target
simulation environment needs access to them for analysis. If the model includes continuous states, there are three
options: the model can be discretized, the solver can be generated and contained fully within the generated code, or

Figure 5. C++ class declaration.

AIAA Modeling and Simulation Technologies Conference and Exhibit AIAA-2010-7776
2-5 Aug 2010, Sheraton Centre Toronto, Toronto, Ontario, Canada

Copyright © 2010 by MathWorks, Published by the American Institute of Aeronautics and Astronautics, Inc., with permission
7

the states can be exposed and integrated by the solver from the target simulation environment. Figure 6 shows the
code generated from a Simulink model with a fixed step, continuous solver. A separate data structure holds
continuous state information, while the step function has been separated into two functions. The update function
computes the continuous states for the next time step, and the output function computes the output values based on
the continuous state.

IV. Conclusions
This paper presented an overview of system simulation environments and explained how history, mandate, and

requirements factor into the decision to integrate multiple simulation environments--including commercially
available and proprietary simulation tools. Several approaches for integrating algorithms and models from different
modeling domains were discussed. Finally, a detailed discussion on integrating code generated from a COTS tool
into the corporate simulation environment was presented. The capabilities and features covered were specific to
Simulink and its C/C++ code generation technologies, but the requirements, such as control of function prototypes,
data declaration, and tasking information, are generic and apply to any simulation software integration challenge.

Readers are encouraged to contact the authors for additional information or to share code generation and

integration experiences.

References

1. MathWorks, Inc. website, www.mathworks.com
2. Melde P., Collins B., and Campbell T., "Enabling Interoperability of Native Engineering Toolsets with

System Simulations and Flight Software," AIAA Modeling and Simulation Technologies Conference and
Exhibit, August 15-18 2005, San Francisco, CA.

3. “Integrating Existing C Functions into Simulink Models with the Legacy Code Tool,” Simulink product
documentation, MathWorks Inc., Release R2010a dated March 2010.

Figure 6. States and continuous time.

