
Designing Control Logic for Cockpit Display Systems using 
Model-Based Design 

Siddharth Sharma and Nishaat Vasi 
The MathWorks Inc., 3 Apple Hill Drive, Natick, MA, 01701, USA 

Jason Ghidella 
The MathWorks Inc., 3 Apple Hill Drive, Natick, MA, 01701, USA 

Cockpit display systems require logic for managing the modes of multiple components 
aboard the aircraft. Multiple competing criteria for display need to be applied and 
prioritized to ensure the most important and relevant information is displayed at all times. 
State machines provide a natural mechanism for representing system modes while flow 
charts make it easy to represent complex flow logic. This paper outlines the use of Model-
Based Design to efficiently design the control logic for a cockpit display system. By 
conducting functional and structural verification on the design model, errors in the design 
can be quickly discovered and corrected before the design is implemented in software.  

I. Introduction 
he logic for generating pages for an aircraft’s cockpit display system can be complicated and difficult to 
develop, test, and verify due to the large number of signals that must be processed and the various competing 

criteria for prioritizing what to show at any given time. Cockpit display software has three primary responsibilities: 
acquiring and conditioning data from the aircraft, warning management, and page control. Signals from various 
parts of the aircraft are first synchronized and filtered by the display software. For redundant signals, the signal 
values are compared before a signal value is selected. Then the selected signal values are passed to the warning 
management and page control logic for processing and display control. 

Cockpit display design involves developing sophisticated logic to manage multiple pages and warnings for 
display on various display units. The display units are used to present critical information to the pilot, including the 
health of various aircraft systems, flight characteristics, and navigational information. The aim of the display system 
is to selectively present only the most relevant information in a clear and concise manner.  

The display system software switches among different modes based on the operational status of the display 
system hardware, status of the aircraft equipment, phase of flight, and inputs from the user. The modes of the display 
system are used to generate different warnings and pages for display. When the display system hardware is initially 
switched on, the display units show the appropriate boot-up information. Once the startup is successful, a default 
page is shown. As an example, the System Display screen defaults to the auxiliary power unit (APU) page when it 
has just been started. The display units then switch pages based on the status of various systems in the aircraft. For 
example, when the aircraft engines are starting, the system display unit switches from the default page to the 
Engines page. 

In each phase of flight a subset of signals is monitored to evaluate the status and performance of various systems. 
When a fault is detected for a monitored signal, the display unit changes modes, an appropriate page is populated on 
the screens, and a warning is generated for the Electronic Centralized Aircraft Monitor (ECAM) screen (see Fig. 1). 
Some faults may only cause warnings to be generated while others may only cause page switches on the displays. In 
the presence of multiple faults, a priority order is used to select the page to display and the order of the warnings. 
The pilot can also view a certain page by selecting from a set of buttons. The selection by the pilot causes a mode 
switch in the display unit software. 

With Model-Based Design1,2,3, system and verification engineers can efficiently design and test complex control 
logic early in the development process, where it is easier and less expensive to update if needed4. The design is 
specified using state machines and flow charts. Test harness models can also be constructed to test individual 
components against requirements. A system model that includes plant and environment models can be used to 
simulate and validate overall performance. The model is used throughout the design, first through desktop 
simulation, later for real-time simulation, and finally for implementation of the embedded software. This typically  
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means that the model is created and used by a number of different roles.  For example, the design engineer is 
responsible for modeling the high-level requirements of the control logic, and the verification engineer is 
responsible for leading the verification and validation effort at a model and code level.  

 

 
 
In section II, the mode logic for this application is modeled using state machines and flow charts in the 

Stateflow®5 design environment. State machines can clearly represent the modes of a system while flow charts 
provide a simple representation of the transitions between modes. During development of the logic, simulation is 
used extensively to help identify design and modeling errors early. The various components of the design are linked 
to the functional requirements.  

In section III, the need to start design verification early is discussed using the landing gear warning component 
as an example. Here the interaction between the design and verification engineer is explored when using Model-
Based Design. Section III also discusses the need for functional verification of the design against requirements, 
commonly known as requirements-based testing. Test cases were authored and linked to the same functional 
requirements document as the design. Simulation was used to run the test cases and verify the design.  

In addition to functional verification, section III also covers the need for structural verification of the landing 
gear warning component. Model coverage metrics were collected during the simulation of the requirement-based 
test cases. A lack of complete model coverage can be due to undocumented requirements, missing test cases, or 
design errors. In this example, the analysis helped detect a design error that we could fix before the software was 
implemented. 

II. Modeling the Cockpit Display System  
 
The software for a cockpit display system (CDS) acquires and synchronizes data from various sensors and 

computers aboard the aircraft, generates flight warnings, and displays appropriate data and warnings to the pilot. 
Fig. 2 shows the relationship of the control logic with the rest of the application. The Control Logic block receives 
data and user input from the Inputs block. The Inputs block represents a model of the aircraft. It models various 
sensors and computers that send data to the CDS. The Control Logic block models the CDS software. The Display 
Code block is responsible for integrating the numeric IDs from the Control Logic block with other text based 
sources and generating graphics on the display units (DUs). The component that integrates the IDs with other 
components is called glue code. Glue code is used to keep the design of the software for the warning system separate 
from the warning requirements.  

  
Figure 1. ECAM screens: Engine Display (left)  and System Display (right) 



   
The Control Logic block contains three components: signal conditioning, warning management, and page 

control. Data from the plant model is sent to the signal conditioning component (see Fig. 3a). The results are then 
used to compute warnings for the system. These warnings along with additional data from the signal conditioning 
component are sent to the page control component for selecting the pages and appropriate information to display on 
each DU. Information from the page control component is then sent to the Display Code component (see Fig. 3b). 
The next sections cover the structure, function, and development challenges of each control logic component. 

 
 
 
 

 

A. Signal Conditioning  
The Control Logic component receives data from multiple sensors in the aircraft that are executing at different 

rates. The Signal Conditioning component (see Fig. 4) synchronizes the data by fetching data at the appropriate rates 
for the signals. To make the software components reusable, their units are normalized. The normalized data received 
from the sensors is filtered for noise. The filtered data is validated by checking that the values lie within certain 
limits. Since the above operations are computationally intensive, this component is best modeled using mathematical 
tools. Simulink was used in our model. Many critical systems on the aircraft have redundant sensors and a voting 
mechanism is used to select the final value of the data.  

  
Figure 2. Architecture of a Cockpit Display System  

 

Figure 3a. The components of Control Logic 
 

Figure 3b. The components of Display Code 



 

B. Warning Management 
The warning management system is responsible for generating messages that are displayed on the various DUs. 

The messages indicate the health and status of various systems aboard the aircraft through memos and warnings. 
When in normal mode, the system will generate a memo to inform the pilot of the status of the component, but if a 
component is not behaving as expected, a warning is generated.  

The behavior of the components can be modeled clearly as distinct modes of operation. As an example, the fuel 
pressure for the aircraft can be normal, low, and so on.  Note that the normal fuel value ranges are different for each 
phase of flight since fuel is consumed over the course of the flight. Hence, warning management requires monitoring 
the phases of flight and the modes of the components. We use a state machine to represent the component modes 
and the phases of flight. The phases of flight and the modes of the components are represented using states that 
execute at each time step in the simulation, referred to as parallel states (see Fig. 5). Parallel states are drawn as 
rectangles with dashed borders. The state FlightPhases captures the phases of flight whereas ComponentModes 
encapsulate the modes for the components. Let us look at the content of these states in more detail. 
 
 
Given the large number of components aboard the aircraft, monitoring the modes of each component is quite 
challenging. Typically this is done by representing the behavior of various systems into modes of operation. 
Warnings are generated when the components enter specific modes. Given the  
 
Given the large number of components being monitored there is a level of importance associated with each error 
message. The warnings are prioritized and collected into levels to make sure only the highest priority messages are  
 

A complete flight is broken into phases based on critical system or flight characteristics (see Fig. 6). For 
example, the flight transitions from the first to the second phase of flight when the airspeed is above a predetermined 
threshold. Conditional logic based on the value of signals is used to transition between the phases of flight. The 
sequence of flight stages are represented with states, and transition lines are used to represent valid paths between 
those states. The transition from one state to another is taken when the condition on it is true. A numerical ID, 
FlightMode, is used to track the state of the system outside FlightPhases.  

The second aspect of the design that affects message generation is the aircraft components’ status. Below, we 
look at the design of the landing gear system component. A state machine is used to clearly represent the modes of 
the component. Flow charts and functions are used to define the conditions for transition between the modes. Later 
in the paper, we discuss how to link such a component to high-level requirements and test strategies for this 
component. Table 1 contains a subset of the high level requirements for the landing gear warning management 
system. 

 
 

 

Figure 4. Signal Conditioning model 

 

Figure 5. Interdependent components of warning management 



The landing gear warning management system receives 
Boolean command inputs, LGLeftLock and LGRightLock, which 
drive the state of the landing gear (see Fig. 7). The output 
LGMode is used to track the mode of operation outside of the 
state machine and display the appropriate warning message to the 
pilot. The aircraft has two landing gear units, one on the right and 
one on the left. The landing gear units can be locked when they 
are fully retracted (up) or fully extended (down). Both the landing 
gear units should work in tandem. In other words, they should 
both be locked at the end positions and unlocked for 
extending/retracting together. When both the units are locked, 
LGMode is 1; when only one is locked, LGMode is 2; and when 
both are unlocked, LGMode is 3. The output LGMode controls 
which warning message should be displayed to the pilot. If only 
one unit is locked for an extended period of time (10 seconds in 
the example), a fault is generated and a warning is displayed to 
the pilot. 

It is important to note that all components do not generate 
warnings in each phase of flight. So, the warning generation 
system, WarningsComputation, needs to monitor both the phase 
of flight and the component modes, modeled in FlightPhases and 
ComponentModes respectively, as it generates the warning 
messages. To model such behavior we first use states to model the 
phases of flight (see Fig. 8a). The value of variable FlightMode is 
used to guard the transition between these states. Within each 
state, flow charts are used to check the modes of specific 
components.  

 
 

3.1 Both landing gear units locked 
If left landing gear unit and right landing gear unit are locked, set the warning display 
mode to 1 

3.2 Only one landing gear unit locked 
When switching from locked to unlocked states and unlocked to locked states for each gear 
unit 

3.2.1 If left landing gear unit is unlocked and the right landing gear unit is locked, set the 
warning display mode to 2 

3.2.2 If right landing gear unit is unlocked and the left landing gear unit is locked, set the 
warning display mode to 2 

3.2.3 If value of display mode is 2 for more than 10 seconds, indicate error by setting display 
mode to 4 

3.2.4 If display mode is 4 and both the landing gear units are locked, set the warning display 
mode to 1. Else if, display mode is 4 and both the landing gear units are unlocked, set the 
warning display mode to 3. 

3.3 Both landing gear units unlocked 
If left landing gear unit and right landing gear unit are unlocked, set the warning display 
mode to 3 

Table 1. Partial list of requirements for mode switching logic of landing gear warning system 

 
 
 

 

Figure 6. Phases of flight 



Using this approach, the designer can choose the components and component modes for which messages need to be 
displayed on the DU. Instead of flow charts, a text-based specification could also have been used for generating the 
message ID array with switch-case or if-else constructs.  

 

 
 
We have not discussed how the order of the warnings messages and their display colors are decided. That is 

because these details are handled by the glue code. Some messages might not be displayed because of the fixed 
number of error message lines on the display.  The array of message IDs is sent from the warning message code to 
the glue code which in turn combines the message IDs with message priority, color code, and message text from 
external text specifications at run time. The messages are then sorted by priority and formatted before being 
displayed on the DUs. The message details are read in at run time as opposed to being hardcoded in the software to 
enable changes without regeneration of software. One drawback of loading error message details at run time is that it 
can be difficult to determine if issues are related to software or due to an incorrect specification. If the messages are 
defined completely in software, the debugging capabilities of the simulation environment can be used to understand 
issues. As an example, if the messages are completely defined in software, Stateflow® software highlights the paths 
taken by logic defined in the flow chart.  You can set a breakpoint and step though the logic to inspect message 
details and correlate that to the modes of various components in the system. If the messages are loaded at run time 
by the glue code, the messages need to be mapped manually to message IDs and then correlated to the component 
modes. 

 

Figure 7. Mode switching logic for landing gear warnings 



               
  

C. Page Control 
Software for display systems controls the switching of pages on the DU based on criteria including flight phase, 

system faults, and pilot input. Each page informs the pilot about a different aspect of the aircraft’s equipment. The 
APU page, Engines page, and other pages can be modeled as modes of the display. These modes are represented 
using states in a state machine. The system stays in a particular state, or displays a specific page, until there is a 
change in the system or an event occurs. State machines are a clear representation of such event-based reactive 
systems. 

CDS software drives multiple DUs, all of which are active simultaneously. Using state machines, systems that 
work independently but are active simultaneously are represented using parallel states. Each parallel state contains 
page logic for a different DU.  

 
 
 
 

 

Figure 8a. Representing flight phases for 
warning message generation  

Figure 9. Page sequence displayed on System Display screen during startup 

 

Figure 8b. Appending Message IDs to an array 



As an instructive example of page logic for the system display screen, consider the contents of the 
SystemDisplay state. As the pilot switches on the APUs aboard the aircraft, the display hardware boots up and the 
screen shows successive pages for startup including initialization, booting, the APU page, the Engines page, and so 
on based on the state of the systems and events generated by pilot input (see Fig. 9). After startup, the system 
displays pages for flight phases as the aircraft starts to move through phases of flight.  

The phase of flight needs to be polled by the software to show the appropriate page on the screen. In state 
machines, polling is achieved by drawing a transition from the parent state (in this case, NormalFlight) to the 
junction inside the same state (see Fig. 10). Due to top-down semantics in Stateflow® software, the inner transition 
causes the software to exit the child states, recheck the conditions on the transitions at each time step, and then enter 
the appropriate child states representing the phases of flight.  

 

 
 
System faults have higher priority 

than normal flight phase pages. User 
selection, in turn, has higher priority than 
system fault pages. Design engineers can 
use a combination of state machine 
semantics and flow charts to clearly model 
the priority order in software for page 
logic.  
As shown in Fig. 11, a transition is drawn 
from the parent state NormalFlight to 
UserSelection_Faults.  Due to the top-
down (parent to children) semantics in 
Stateflow® software, this transition will 
be checked and executed irrespective of 
the child state of NormalFlight that the 
system is in. On this transition, the 
software checks if a fault exists or if a user 
selection has been made. This provides 
higher priority to the state 
UserSelection_Faults than the children of 
states NormalFlight. The system shows  
 
 
 
 

 

Figure 10. Page logic for phases of flight 

 

Figure 11. Page sequences for the System Display screen 



default flight phase pages in the absence of faults and user selections modeled in UserSelection_Faults. 
Within the UserSelection_Faults mode, user selection is given priority over system faults. As shown in Fig. 12, 

two transitions emanate from the junction at the top of the state. The transition labeled 1 has higher priority than the 
transition labeled 2 and will be checked first. The condition on the first transition checks if a user selection has been 
made. If yes, the logic traverses the graphical function to enter the appropriate state and set the value of the variable 
ECAMMode, which is used in the glue code to generate the appropriate page. In the absence of a user selection, the 
logic traverses down the right side and checks which component is in a fault mode. If there are multiple faults, the 
page located highest in the tree will be selected for display because the logic is moving down the tree in this case. 
So, for example, the Engines page will be shown if the engine has a fault and the cabin pressure begins to drop at the 
same time.  

 

  
To show the most current page to the pilot, the page logic must be traversed at a defined time interval. This 

requires regular polling of component errors and user selections. Polling is done using the inner transitions from the 
child states, such as Engine and Cabin_Pressure, to the parent state UserSelection_Faults. The inner transition 
causes the logic to exit the active child state and traverse the hierarchy of decisions from the top to make sure the 
most important page is shown to the user every five seconds. The time delay was built into the condition for the 
inner transition to avoid rapid switching between pages. In the absence of faults and user selections, the pilot should 
not see the error pages any more (that will make the system appear unresponsive). So, as shown in Fig. 11, the 
transition from the parent state UserSelection_Faults to NormalFlight is checked at every instant after the system 
has been in the state UserSelection_Faults for a second.  

 

III. Early Design Verification of the Landing Gear Warning Component 
 

Creating an executable system specification in the form of a model enables continuous verification and 
validation during the design cycle. Using an incremental testing approach, wherein functional and structural 
completeness of each low level component within the controller is independently verified in an open loop 
configuration, the design and verification engineer validate whether the model meets its requirements before 
generating code and implementing the design on hardware. The primary motivating factor for early verification is 
identifying errors early in the design and test phases to save time and effort6. The cockpit display software is 
typically built one component at a time. This enables the design engineer to develop and functionally verify the 
behavior of each component in a modular fashion. Also, such an approach lends itself well to component-level 
verification and open-loop testing of each control module, typically performed by the verification engineer. In this  

 
 
 

 

Figure 12. Page priority for User Selections and Faults 



section, we outline techniques used to verify the landing gear warning component (refer to section II). With Model-
Based Design the verification and design engineer can collaborate to verify software components. The verification 
methodology can be applied successively for each component in the cockpit display controller, before moving on to 
integration level testing.  

A. Requirements Traceability 
To determine if he has met high-level design requirements, the design engineer links model elements to specific 

requirements (or requirement objects) stored in a database or requirements lifecycle management tool. Creating 
these links enables traceability from a particular requirement to the design implementation and vice versa. 
Maintaining requirements traceability is particularly useful for design and verification reviews, and is mandated for 
DO-178 certification. If a particular requirement changes, the design engineer can quickly identify the parts of the 
model that need attention. In this work, traceability links are created to a set of high-level requirements stored and 
maintained in Microsoft Word. These requirements represent a small subset of the flight control application 
requirements for the Landing Gear Warning Mode control unit. A summary of the high-level requirements is shown 
in Table 1. The requirements are formulated in a natural language and defined in Word. One way of creating 
requirement associations is using the Simulink® Verification and Validation ™ software requirements traceability 
interface. 

B. Functional Verification 
Once the design engineer has a preliminary version of the landing gear warning mode component ready, and is 

confident that he has implemented the specified high-level requirements, he uses simulation to verify the functional 
behavior of the implementation. The verification engineer is tasked with creating test scenarios to verify design 
correctness, and uses the same high-level requirements (Table 1) to create test vectors for the Design-Under-Test 
(DUT). Typically, verification engineers combine empirical test input data with specific verification criteria for the 
landing gear design to construct tests. Instead of testing only the source or object code—which requires waiting for 
the design team to convert a floating-point model to a fixed-point design and generate code for a relevant embedded 
control unit—the design engineer can use test cases to simulate the functional correctness of the model. 

Applying this early verification technique to test the requirements for a component of the system, specifically 
for the Landing Gear Warning Modes unit, a test harness is established (see Fig. 13) by extracting the DUT and 
setting up input and output ports to faithfully represent the interface of the DUT.  

 

 
 
 
 
 

 
Figure 13. Test harness setup in Simulink 



The inputs are driven by a Signal Builder 
block. The output is compared against the 
expected result (derived from requirements) 
by the verification subsystem.  The 
Verification Subsystem contains logic and 
assertion blocks that evaluate whether the 
output modes of the DUT meet the output 
modes specified by the requirements.  

Test cases are imported into Signal 
Builder and associated with specific 
verification blocks as well as the requirement 
that the test case is verifying. Associations of 
requirements and verification blocks with the 
test cases help validate the design for 
functional behavior. For example, in Fig. 14 
the signals of test group BothOFF are 
associated with an Assert block within the 
Verification Subsystem and linked back to 
requirements. 

When the test is executed, the simulation 
will stop if the condition specified within 
Verification Subsystem is invalidated (and 
thus the requirement is violated). If an 
assertion is detected, the engineer can trace the particular test case and design violation back to the root requirement 
for further review. Consider a 
case in which the design engineer 
encounters an assertion for the 
test BothOFF while simulating 
the tests (see Fig. 15).  

The engineer finds that the 
landing gear assembly is 
incorrectly assigning a warning 
state (LGMode = 2) of only one 
gear being unlocked when both 
landing gears should be unlocked 
(LGMode = 3).  He identifies an 
error in the state logic wherein 
the state BothUnlocked (that sets 
LGMode = 3) was always 
superseded by state Transitioning 
(that sets LGMode = 2). By 
changing the transition order for 
the above states and modifying 
the conditions for entry, the 
design engineer fixes the model 
and the BothOFF test passes (see Fig. 16).  

 

 

 

Figure 14. Test cases in Signal Builder with associated 
verification mechanisms and requirements information 

 
Figure 15. A detected assertion 



 

C. Structural Verification 
 
Executing requirements-based tests may not verify all the design elements and subcomponents.  In practice, 

requirements could be lacking tests, the requirements could be ambiguous or incomplete, and the design could 
contain superfluous elements6.  Model coverage metrics provided by Simulink® Verification and Validation ™ 
software7 uncover untested portions of the design by displaying coverage information on the model. Model coverage 
metrics are analogous to code 
coverage metrics. They can be 
used to identify design 
elements that were not 
executed by the test cases and 
give an early indication of 
unforeseen modeling errors. 
Of the coverage metrics that 
can be recorded, for this work, 
the engineers capture decision 
coverage, condition coverage, 
and modified 
condition/decision coverage  

 
 

 

 
Figure 16. The initial design (top) and modified design (bottom) 

 

 
Figure 17. Model coverage summary HTML report 



(MC/DC) metrics. Decision coverage examines items that represent decision points, such as states in Stateflow® 
software. Condition coverage examines blocks that output the logical combination of their input such as transitions 
in Stateflow® software. MC/DC determines if the logical inputs have independently changed the output.  

After stimulating the DUT with the initial 
set of test cases, the engineers automatically 
generate a report (see Fig. 17) that documents 
decision coverage, condition coverage, and 
MC/DC for the controller. It is observed that the 
WarningModes state does not have full structural 
coverage and may warrant further investigation. 
The verification engineer now needs to 
determine why the test cases he provided did not 
completely exercise the DUT. He could either try 
to construct additional tests to meet full structural 
coverage or use Simulink® Design Verifier™ 
software, a formal methods analysis engine8, to 
augment existing requirement-based tests with 
additional test vectors that meet all the coverage 
objectives for the DUT.  To generate test vectors, 
he uses Simulink® Design Verifier™ software to 
choose MC/DC objectives. The analysis engine 
identifies a total of 128 coverage objectives for 
the DUT, for which it can create test cases that 
satisfy 112 objectives. The formal analysis 
engine proved that no test case for exercising the 
remaining 16 test objectives exists (see Fig. 18). 
The collective coverage for all the test cases is: 
condition coverage of 95%, decision coverage of 86%, and MC/DC of 82%. 

From a verification perspective, the engineers are interested in the unsatisfied coverage objectives. Using the 
color-coded results of the model coverage analysis on the DUT (see Fig. 19a, 19b), the verification engineer 
identifies that transitions between the BothLocked and BothUnlocked states are never executed and there can be no 
test case that excites these two conditions sufficiently.  In the model, these transitions are highlighted in red. 
Essentially, this logic is unused in the design and will lead to dead code or unreachable code in the implemented 
controller software. Coverage objectives (decision and condition points) highlighted in green within the model 
depicts parts of the design that are valid and can be exercised by a test case. The tool provides a link from each 
coverage objective to the test case that stimulates that model path during simulation. For dead logic, there can be no 
test scenario that stimulates the design path, and hence such logic needs further investigation by the verification and 
design engineers. 

The goal of test generation is twofold.  First, find dead logic in the design and, by extension, dead code. Second, 
automatically generate tests for coverage. Using requirements traceability, the engineers can navigate from the 
errant transition to the high-level requirement to investigate whether the design is achieving its purpose or is over-
specified.  The verification and design engineers review these results and decide on the next course of action – either 
fix the design, clarify the requirement, or modify the requirement.  Regarding the automatically generated test 
vectors, the verification engineer needs to determine if these are part of a requirement that he may have overlooked 
and for which he did not create a manual test. For a flight control application, he must account for each test case that 
he creates and associate these to requirement documents. By performing structural and functional verification tasks 
on the model, the engineers identified erroneous design decisions and rectified these early in the development phase 
of the landing gear warning mode component.  

 
 
 

Figure 18. Simulink Design Verifier analysis results 



The test vectors, a combination of functional and automatically generated tests, can be used to verify code 
running in software-in-the-loop (SIL) and processor-in-the-loop (PIL) test configurations. By frontloading the test- 
case generation, these engineers are able to reuse the tests for source code and object code verification steps later on. 

 

 

 

Figure 19a. Dead logic in the model identified in red 

 

Figure 19b. Simulink Design Verifier Results 

 

 



IV. Summary 
This paper presents a workflow for developing complex logic in a cockpit display system efficiently using 

Model-Based Design. State machines and flow charts were used since they can clearly represent the modes of the 
aircraft components and the phases of flight, represent multiple display units, all of which are active simultaneously 
but work independently, and clearly model competing priorities for display.  

Creating an executable system specification in the form of a model enabled continuous verification and 
validation during the design cycle. Simulation based tests were used to verify the functional behavior of components 
and uncovered an incorrect mode of operation. Additionally, by using automatic test generation and model coverage 
metrics, redundant design elements were detected that would result in dead code on the controller. Requirements 
traceability was used to navigate from the design model to its associated requirement to manage and track changes 
in both.  
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