18

Jordan’s Canonical Form Just Doesn’t Compute

Diagonalizing matrices can be dangerous rto your digits

tools in MATLAB and SIMULINK. The Jordan Canonical

Form is the key relationship between matrices and differ-
ential equations. So, why doesn’t MATLAB use the JCF in any of
its computations? In fact, until the Symbolic Math Toolbox came
along, we didn’t even have a function to compute the JCF.

The difficulty with the Jordan Canonical Form is that it is
wildly sensitive to perturbation. Any kind of error—uncertainty in
experimental data, arithmetic roundoff error, linearization of non-
linear functions—completely changes the JCF and, more impor-
tantly, the transformations which generate it.

Let’s start with a system of # linear, constant coefficient
ordinary differential equations.

x'=Ax

M atrices and differential equations are the key mathematical

Here x(#) is a vector-valued function of 7 the prime denotes
differentiation with respect to 7, and A is a given #-by-» matrix
which is independent of 7. If you’ve never heard of—or want to
forget—the Jordan Canonical Form, then you have to hope there
is a matrix I which diagonalizes 4, that is "/AV is a diagonal
matrix A. Then the change of variables,

x=11y
reduces the #-by-# problem to # instances of the 1-by-1 case,
‘7, = Av

The elements of the diagonal matrix A are the eigenvalues of A
and the columns of V'are the eigenvectors of A. The #-th compo-
nent of the solution y(7) is the exponential function of 7 deter-
mined by the eigenvalue A, and the initial value y,(0)

Yi(t) = 30) exp(hz)

The components of the solution x(7) of the original problem are
then linear combinations of the exponential functions determined
by the eigenvalues and eigenvectors and the initial values.

But this fantasy about diagonalizing matrices leaves out some
very important differential equations, like the single, second order

u'=0

The solution, of course, is a straight line—a linear polynomial in 7.
The solution does #of involve any exponentials. This equation
can be converted to a 2-by-2, first-order system by taking v to be
the vector with components

This can be written in matrix form

x'=Jx
where | is the 2-by-2 matrix generated by the MATLAB statement

J=[0 1, 0 0]

This matrix cannot be diagonalized; no change of variable which
preserves the differential equation will produce a zero in the
upper right hand corner. That had better be the case, because the
differential equation has polynomial, not exponential, solutions.
The matrix J is the simplest example of a nondiagonal Jordan
Canonical Form. The eigenvalues—in this case, a pair of zeros—
are on the diagonal, but that crucial 1 off the diagonal couples the
two differential equations.

A different change of variable leads to a matrix whose structure
is not quite so obvious. Let

Xy=u+u'
Xo=u-u'
Then the equation becomes
x'=Ax
where A is generated by the MATLAB statement
A=11/2 -1/2; 1/2 -1/2]

This new change of variables really hasn’t altered things very
much. The Jordan Canonical Form of A is the matrix J/ from our
first system. The differential equation still has solutions which
are quadratic polynomials in 7 it can’t be transformed into a pair
of decoupled equations with exponential solutions.

But now, let’s perturb the matrix A very slightly to

A

[0.5 -0.49999999; 0.49999999 -0.5]

A =

0.50000000000000 0.49999999000000

0.49999999000000 -0.50000000000000

The eigenvalues are changed from a pair of zeros to

A = eig(A)

7\’ =

1.0e-004 *
1.0000
-1.0000

A change of 70 in the matrix elements changes the eigenvalues
by 70-. Now this perturbed matrix has distinct eigenvalues, and
can be diagonalized. The eigenvector matrix is

[V,A]

VvV =
0.70717748832907
0.70703606697295

= eig(A); V

0.70703606697295
0.70717748832907

FROM THE MATHWORKS

NEWSLETTER —

SPRING 1994

This eigenvector matrix V defines a change of variables that
transforms the system into a decoupled system whose solutions
involve exp(1/10000) and exp(-1/10000). But we know the solution
should be very close to a linear function of 7 It is probably a lousy idea
to try to represent the solution in terms of these two exponentials.
This is reflected in the fact that 7is badly conditioned.

cond(V) = 1.0000e+004

This matrix A is an example of why we can’t use the Jordan
Canonical Form for practical computation. Technically, A has a
full set of linearly independent eigenvectors and a diagonal JCF.
But any attempt to use this fact will be plagued by the condition
number of Vand a resulting loss of accuracy. On the other hand, if
we try to say that A does not have a full set of eigenvectors and use
a nondiagonal JCF, we are also making possibly significant errors.

Another example can be generated starting with MATLAB’s
test matrix,

A = gallery(5)

A =
-9 11 -21 63 -252
70 -69 141 -421 1684
-575 575 -1149 3451 -13801
3891 -3891 7782 -23345 93365
1024 -1024 2048 -6144 24572

This matrix was constructed so that it’s characteristic polynomial is
M=0
All five eigenvalues are zero. The Jordan Canonical Form can be

obtained from the Symbolic Math Toolbox which, in this case,
does exact integer calculations with 70 roundoff error.

|

J = jordan(A)

J =

(0, 1, 0, 0, 0]
[0, 0, 1, 0, 0]
[0, 0, 0, 1, 0]
[Ol OJ 0! O) 1]
(0, 0, 0, 0, 0]

With a well-conditioned change of variables, the equation
x'=Ax

essentially becomes
" ey = ()

All solutions are cubic polynomials in 7. So far, so good. But, now
change the second diagonal element of A from -69 to

A(2,2) = -70

A =
-9 11 -21 63 -252
70 -70 141 -421 1684
-575 575 -1149 3451 -13801
3891 -3891 7782 -23345 93365
1024 -1024 2048 -6144 24572

[want to regard that as a significant change; [am not willing to
approximate this new matrix by the unaltered gallery(5). The
characteristic polynomial is now

pretty(factor(charpoly(A,'1')))

4 3 2

(- 1) (A +2X% - 67X + 234) - 168)

One of the eigenvalues is 7. The other four are the distinct,
irrational numbers which are the roots of an irreducible quartic.
The Jordan Canonical Form is diagonal. We could ask the
Symbolic Math Toolbox to compute it, but the result is the kind
of intimidating expression I discussed in the last newsletter.
Instead we can simply ask for

[V,2] eig(A); » = diag(A)
A=
-10.5726
3.7953 + 1.3331i
3.7953 - 1.3331i
1.0000
0.9820

The form of the solution to the differential equation has changed
dramatically, from a cubic polynomial in 7, to a function involving
terms like exp(-10.5726 1) and exp(3.7953 1) sin(1.3331).
Moreover, the change of variables required to obtain this
representation is badly conditioned.

cond (V) = 2.3890e+004

The fundamental difficulty is with matrices, like this last A,
which are close to, but not exactly equal to, matrices with non-
diagonal JCFs. If we try to diagonalize such matrices, then errors
are magnified by the condition number of the eigenvector matrix,
which can be arbitrarily large. On the other hand, to use the
“nearby” nondiagonal JCF may also represent an unacceptably
large error. We're damned if we do and damned if we don’t.

The numerically reliable approach to all this is to avoid the
Jordan Canonical Form altogether. The portions of MATLAB
and SIMULINK that deal with matrix differential equations use
other solution methods, including the Schur Form (which is
triangular, instead of diagonal) and the matrix exponential (which
is #ot computed from eigenvalues and eigenvectors). Maybe we'll
have a chance to discuss such things in a future newsletter.

I can’t resist finishing up with a personal story. Prof. G. W.
“Pete” Stewart of the University of Maryland introduces speakers
at conferences by composing original limericks for them. Several
years ago, he honored me with:

Said Professor Cleve Moler one day,
['d like to get ¢ to the A.

17’s as easy as pie,

To get e to the vy, =
But I can’t get e to the]

Thanks, Pete.

19

