
Modeling Physical Systems as Physical Networks with the
Simscape Language

Steve Miller, The MathWorks

1. Abstract

Engineers are relying more and more on simulation to accelerate development processes.
Combining computer simulation with Model-Based Design techniques enables engineers to
not only complete tasks in a shorter period of time, it makes it possible to find design errors
before building hardware, making the errors easier and less expensive to fix.[1] As the
systems they develop require integrating control systems with physical systems spanning
multiple physical domains (mechanical, electrical, etc.), a useful model of the physical
system (plant) is critical for developing an optimized system. Traditional methods (C,
FORTRAN, etc.) and signal-based or input-output (causal) methods in graphical software
tools (Simulink, etc.) were useful for control engineers because they were written in a
language they could easily understand and integrate with their control system models.
However, these models can be difficult to reuse, leading to redundant work. A technique
which has been applied to electrical systems for quite some time is now being used on
multidomain physical systems. The physical network approach, often referred to as acausal
modeling, enables engineers to create reusable models of physical components that can
span multiple physical domains. Simulation tools that support this method (Simscape, etc.)
then build up the equations for the system and solve the differential algebraic equations
directly, resulting in accurate simulations of the entire system. This paper focuses on the
physical network technique for modeling physical systems and its use in Simscape within the
Simulink environment.

2. The need for an additional modeling methods

Input-output methods (also known as causal modeling) have been used to model physical
systems for quite some time[2]. One of the main reasons this method is used is because it
is the natural language of control engineers. In a standard control loop, the plant is
represented as a transfer function with an input and an output. Finding a mathematical
representation composed of blocks with inputs and outputs fits naturally into this system, and
is easy for a control engineer to use and understand.

Figure 1: Diagram representing typical control loop structure. The plant, or physical system,
is often modeled using the input-output method because it fits well into this structure.

Another reason is the use of data-driven modeling. Techniques that use system
identification theory take measurement data and produce a transfer function that reproduces
the behavior of the system. Because it is based on measurement data, these models can be
very accurate for behavior about a specific operating point and can execute very quickly.
These types of models typically (but not always) execute very quickly because the modeler
has specified the exact calculations that the solver must complete.

Figure 2: Diagram of a Figure 3: Implementation of equations in Simulink,
DC Motor and equations demonstrating input-output modeling method.

However, while this method works very well for control systems, it has some disadvantages
when modeling physical systems. Physical systems are often expressed in the form of
DAEs, which are composed of sets of equations that must be solved simultaneously. This
type of system can only be approximated using an input/output modeling technique. Another
disadvantage is that the models that are created depend upon which elements they are
connected to. It is necessary to know which inputs are available and which outputs must be
calculated in order to connect it with the rest of the system. This type of model is difficult to
reuse in other models or applications, for it requires that the other components in the system
are modeled in the same manner. This becomes especially complex when modeling
components that cross multiple physical domains, like a DC motor or a hydraulic cylinder. In
this case, the model is dependent upon multiple other components that may have been
modeled by different engineers, restricting the options of implementing the equations and
therefore limiting the chances of reusing the model in other applications.

Due to these reasons, engineers began looking for a better method for modeling these types
of systems. For purely electrical systems, Kirchoff‟s laws have been used for quite a long
time to express the equations for a entire system by applying a few basic mathematical rules
to a network of electrical components represented by their individual mathematical
models[3]. For example, the component model of a resistor was represented by v=iR, and
this component model of an ideal resistor was identical for all resistors in the electrical
network, independent of where the resistors were placed in the circuit. The equations for the
entire system could be derived by applying Kirchoff‟s laws at the nodes of the electrical
circuit. This method permits the component models to be modular and reusable while also
being able to mathematically represent an entire circuit. Physical modeling languages
focused on electrical systems have been in existence for quite some time (VHDL-AMS,
VerilogA, etc.)[4].

It was seen that other physical domains were analogous to electrical networks, and that
similar rules could be applied to systems composed of one or more other physical domains.
With this came the rise of other physical modeling languages such as Simscape[5],
Modelica[6], 20Sim, and others that wished to provide for multidomain physical systems the
same benefits that Kirchoff‟s laws provided for electrical systems. Using this method, an
engineer could build up a library of component models that could be reused in a variety of
models in a variety of applications. When used in a modeling environment that also permits
input/output modeling methods, it enables engineers to model the entire system with each
component (physical or control element) modeled in a language natural for that domain.
When combined with tools for generating C code, the engineer then has the power to apply

the Model-Based Design process from the advanced development all the way through
production code generation, which is a must for engineers doing control system
development.

Figure 4: Diagram of a DC Motor Figure 5: Implementation of a DC motor model
with connections that match with using the physical network method in Simscape.
the physical network method.

3. Basics of the physical network method

The basics of the network method requires describing the physical components in the
system using variables particular to the domain that are analogous to voltage and current for
electrical systems. These variables can be determined by examining the flows of energy
into and out of the component. For example, if we look at a DC motor, the component (in its
most basic form) involves two physical domains – electrical and mechanical.

The electrical power can be represented as:
 P = v i (1)

The mechanical power entering or exiting the component can be expressed as:
 P = T ω (2)
The variables used in these equations are analogous to each other. Understanding the
relationship between the variables in these domains makes it possible to apply constraints to
this system for each domain in order to develop the equations for the system.

Figure 6: Diagram of DC Motor Figure 7 Equations Figure 8: Diagram of
 showing physical network variables representing energy physical network element
 flowing in and out with across and through
 of motor variables labeled

Kirchoff‟s voltage law states that the directed sum of the electrical potential differences
around any closed circuit must be zero. Stated in a different way, this implies that the

voltage of all components‟ ports attached to an electrical node must be the same. This can
be related other physical domains. For a hydraulic node, the pressure at all of the
components‟ ports attached to that node must be the same. In our example of a DC motor,
the velocity at all of the components„ ports attached to a mechanical node must be the same.
These variables (pressure, velocity) are analogous to voltage in an electrical circuit, and in
physical networks they are often referred to as across variables.

Kirchoff‟s current law states that the sum of currents flowing towards an electrical node is
equal to the sum of currents flowing away from that node. This can be related to other
physical domains as well. At a hydraulic node, the amount of fluid flowing into that node
must be equal to the amount of fluid flowing out of that node. This constraint must be
applied to all components‟ ports attached to that hydraulic node. Similarly, for a mechanical
node, the forces (or torques) applied in one direction at a node minus the forces (or torques)
applied in the opposite direction at that node must be equal to zero. These variables (flow
rate, force/torque) are analogous to current in an electrical circuit, and in physical networks
they are often referred to as through variables.

Figure 9: Diagram representing two nodes of a physical network representation.
Applying Kirchoff’s laws to these nodes allows the software to determine the equations
for the entire system.

Expressing the mathematical model for a component in terms of these variables makes it
possible to formulate the equations for the entire system by applying the above laws as
constraints to each node. The fact that this analogy can be applied to each physical domain
enables engineers to create components spanning multiple physical domains quite easily.

4. Implementing Physical Networks in the Simscape Language

A basic understanding of physical networks makes it easy to understand how such models
can be created. Looking at a specific implementation of this technique makes it easy to see
how this theory can be applied to actual engineering problems. We will look at a model of a
DC motor implemented in the Simscape language in order to see one concrete example of
the physical network method for modeling physical systems.

In the case of the DC motor, we have definitions of two physical domains – mechanical and
electrical. For each of those domains, we need to define the across and through variables,
including their units. Those definitions, implemented in the Simscape language, is shown
below.

Figure 10: Declaration of the electrical Figure 11: Declaration of the rotational
 domain in the Simscape language mechanical domain in the Simscape language

The component definition will need to make use of these variables in order to define the
equations. It will also have to define the relationship between these variables and the ports
(the connections to the nodes) in order for the tool to be able to properly apply the
constraints. In addition, other internal variables may be needed for the equations. The
definition for the ports, which references these domain definitions, is shown here:

Figure 12: Declaration of the electrical and mechanical ports of a DC motor
 in the Simscape language

With these port definitions, the relationship between the ports and the across and through
variables is expressed in the Simscape language as shown below:

 Figure 13: Setup section of Simscape component file, containing the declaration of the
relationship between the variables and nodes in the Simscape language. This section also
leverages MATLAB functions to check a parameter value and inform the user if it is out of
range.

domain electrical

 variables

 v = { 1 , 'V' };

 end

 variables(Balancing = true)

 i = { 1 , 'A' };

 end

end

domain rotational

 variables

 w = { 1 , 'rad/s' };

 end

 variables(Balancing = true)

 t = { 1 , 'N*m' };

 end

end

nodes

 p = foundation.electrical.electrical; % +:right

 n = foundation.electrical.electrical; % -:left

 R = foundation.mechanical.rotational.rotational; % R:right

 C = foundation.mechanical.rotational.rotational; % C:left

end

function setup

 through(tq, R.t, C.t); % through variable tq from r to c

 across(w, R.w, C.w); % across variable w from r to c

 through(i, p.i, n.i); % through variable i from p to n

 across(v, p.v, n.v); % across variable v from p to n

 if Rwind <= 0

 error('Resistance must be greater than zero')

 end

end

Useful models of physical components will have parameters that correspond to physical
quantities, ideally the kinds of quantities that will be found on industry data sheets. These
parameters should also be defined in the component definition file so that they can be
integrated with the component equations. The parameters of a DC motor implemented in
the Simscape language are shown below:

Figure 14: Declaration of the component parameters for a DC Motor
 in the Simscape language

In each case, the units for the parameter are defined along with a realistic default value, in
order to provide the user a realistic starting point.

Implementing the equations is obviously a critical part of defining the component. As has
been explained, in order to be reusable the equations need to be expressed as a
mathematical relationships that are valid for the component and are independent of what
other components it is connected to. And, in order to be able to properly express DAEs,
these expressions must be able to represent simultaneous sets of equations and not simply
input/output relationships or assignment. In the Simscape language, the operator “==” is
used to represent a mathematical relationship that is not based on assignment. The
equations for a DC motor based on the through and across variables defined above are
shown below:

Figure 15: Declaration of component equations for a DC Motor in the Simscape language

These mathematical relationships are evaluated simultaneously at each step of the
simulation. The techniques used to formulate the equations for the system is explained in
the following section.

parameters

 Kt = {0.0637 'N*m/A'}; % Torque constant

 Ke = {0.0637 'V/(rad/s)'}; % Back EMF Constant

 Rwind = {0.048 'Ohm'}; % Winding Resistance

 Lwind = {1600e-6 'H'}; % Winding Inductance

 J = {0 'g*cm^2'}; % Motor Inertia

 B = {1e-8 'N*m/(rad/s)'}; % Motor Damping

end

 equations

 w == theta.der;

 v == Ke*w + i*Rwind + Lwind*i.der; % Motor equations

 tq == -Kt*i + B*w + J*w.der;

 end

5. Simscape Simulations

The process of converting the physical network diagram into a set of DAEs that can be
integrated is shown in the diagram below:

Figure 16: Flowchart describing the steps of converting a physical network diagram
 into system equations.

Once the physical network diagram is constructed in the diagram editor, the first step
Simscape must do is to analyze the components in the network and their connections in
order to convert it into what is known as a structural model. The structural model is the
framework of the physical network. The equations, parameters, and initialization for the
components is added to this framework to create a behavioral model of the system. The
behavioral model represents the set of DAEs symbolically at the equation level and has all of
the information necessary to describe the system. Further steps are necessary to ensure a
robust and quick simulation.

The system of equations contained in the behavioral model are analyzed and reduced via
symbolic simplification methods. The index of the system of equations is reduced after all
possible simplifications have been made. This is done by first identifying the higher index
constraint equations and then differentiating these equations in time. With this technique,
Simscape can reduce many common classes of index-2 problems to index-1 and index-0
problems. Once the index has been reduced, the resulting system is presented to the
integrator as a DAE or ODE depending on the type of integrator. The integrator integrates
the system to generate the simulation results.

It is important to note that the equation formulation described here results in a set of
equations that can be solved simultaneously. Because of this, there is no need to use an
algebraic loop solver to integrate these equations or to add dynamics to your system to
break algebraic loops. This is a significant advantage over an input-output approach to
modeling physical systems, for the resulting simulation is a more efficient, more robust, and
more exact solution.

6. Conclusion

As more engineers rely upon Model-Based Design to improve their development process,
the model of the physical system (plant model) is becoming increasingly important.
Engineers are learning that it is possible to combine in one environment methods best suited
for modeling physical systems (physical networks) and control systems (input-output

methods). The Simscape language is an option that allows engineers to model the physical
system while leveraging their MATLAB and Simulink experience and legacy models, as well
as permitting system level optimization.

7. References

1. S. Popinchalk, J. Glass, R. Shenoy, and R. Aberg, “Working in Teams: Modeling and Control

Design within a Single Software Environment,” AIAA Modeling and Simulation Technologies
Conference and Exhibit [CD-ROM], Hilton Head, SC, 2007.

2. C. Moler, “The Growth of MATLAB® and The MathWorks over Two Decades,” MATLAB Digest,
Boston, January 2006.

3. L. W. Nage, D. O. Pederson, SPICE (Simulation Program with Integrated Circuit Emphasis),
Memorandum No. ERL-M382, University of California, Berkeley, Apr. 1973.

4. Christen, E. and Bakalar, K., ”VHDL-AMS-a hardware description language for analog and
mixed-signal applications”, IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, Volume 46, Issue 10 , Oct. 1999.

5. Simscape User's Guide, The MathWorks, Natick, MA, October 2008.

6. H. Elmqvist, S. E. Mattsson, and M. Otter, “Modelica: The new object-oriented modeling
language,” presented at The 12th European Simulation Multiconference, Manchester, UK, 1998

