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1. Abstract 
 
Engineers are relying more and more on simulation to accelerate development processes.  
Combining computer simulation with Model-Based Design techniques enables engineers to 
not only complete tasks in a shorter period of time, it makes it possible to find design errors 
before building hardware, making the errors easier and less expensive to fix.[1]   As the 
systems they develop require integrating control systems with physical systems spanning 
multiple physical domains (mechanical, electrical, etc.), a useful model of the physical 
system (plant) is critical for developing an optimized system.  Traditional methods (C, 
FORTRAN, etc.) and signal-based or input-output (causal) methods in graphical software 
tools (Simulink, etc.) were useful for control engineers because they were written in a 
language they could easily understand and integrate with their control system models.  
However, these models can be difficult to reuse, leading to redundant work.  A technique 
which has been applied to electrical systems for quite some time is now being used on 
multidomain physical systems.  The physical network approach, often referred to as acausal 
modeling, enables engineers to create reusable models of physical components that can 
span multiple physical domains.  Simulation tools that support this method (Simscape, etc.) 
then build up the equations for the system and solve the differential algebraic equations 
directly, resulting in accurate simulations of the entire system.  This paper focuses on the 
physical network technique for modeling physical systems and its use in Simscape within the 
Simulink environment. 
 

2. The need for an additional modeling methods 
 
Input-output methods (also known as causal modeling) have been used to model physical 
systems for quite some time[2].  One of the main reasons this method is used is because it 
is the natural language of control engineers.  In a standard control loop, the plant is 
represented as a transfer function with an input and an output.  Finding a mathematical 
representation composed of blocks with inputs and outputs fits naturally into this system, and 
is easy for a control engineer to use and understand.   

 
Figure 1: Diagram representing typical control loop structure.  The plant, or physical system, 
is often modeled using the input-output method because it fits well into this structure. 
 
Another reason is the use of data-driven modeling.  Techniques that use system 
identification theory take measurement data and produce a transfer function that reproduces 
the behavior of the system.  Because it is based on measurement data, these models can be 
very accurate for behavior about a specific operating point and can execute very quickly.  
These types of models typically (but not always) execute very quickly because the modeler 
has specified the exact calculations that the solver must complete. 
  



Figure 2: Diagram of a         Figure 3: Implementation of equations in Simulink, 
DC Motor and equations           demonstrating input-output modeling method. 
 
However, while this method works very well for control systems, it has some disadvantages 
when modeling physical systems.  Physical systems are often expressed in the form of 
DAEs, which are composed of sets of equations that must be solved simultaneously.  This 
type of system can only be approximated using an input/output modeling technique.  Another 
disadvantage is that the models that are created depend upon which elements they are 
connected to.  It is necessary to know which inputs are available and which outputs must be 
calculated in order to connect it with the rest of the system.  This type of model is difficult to 
reuse in other models or applications, for it requires that the other components in the system 
are modeled in the same manner.  This becomes especially complex when modeling 
components that cross multiple physical domains, like a DC motor or a hydraulic cylinder.  In 
this case, the model is dependent upon multiple other components that may have been 
modeled by different engineers, restricting the options of implementing the equations and 
therefore limiting the chances of reusing the model in other applications. 
 
Due to these reasons, engineers began looking for a better method for modeling these types 
of systems.  For purely electrical systems, Kirchoff‟s laws have been used for quite a long 
time to express the equations for a entire system by applying a few basic mathematical rules 
to a network of electrical components represented by their individual mathematical 
models[3].  For example, the component model of a resistor was represented by v=iR, and 
this component model of an ideal resistor was identical for all resistors in the electrical 
network, independent of where the resistors were placed in the circuit.  The equations for the 
entire system could be derived by applying Kirchoff‟s laws at the nodes of the electrical 
circuit.  This method permits the component models to be modular and reusable while also 
being able to mathematically represent an entire circuit.  Physical modeling languages 
focused on electrical systems have been in existence for quite some time (VHDL-AMS, 
VerilogA, etc.)[4]. 
 
It was seen that other physical domains were analogous to electrical networks, and that 
similar rules could be applied to systems composed of one or more other physical domains.  
With this came the rise of other physical modeling languages such as Simscape[5], 
Modelica[6], 20Sim, and others that wished to provide for multidomain physical systems the 
same benefits that Kirchoff‟s laws provided for electrical systems.  Using this method, an 
engineer could build up a library of component models that could be reused in a variety of 
models in a variety of applications.  When used in a modeling environment that also permits 
input/output modeling methods, it enables engineers to model the entire system with each 
component (physical or control element) modeled in a language natural for that domain.  
When combined with tools for generating C code, the engineer then has the power to apply 



the Model-Based Design process from the advanced development all the way through 
production code generation, which is a must for engineers doing control system 
development. 

 

Figure 4: Diagram of a DC Motor        Figure 5: Implementation of a DC motor model 
with connections that match with          using the physical network method in Simscape. 
the physical network method. 
 

3. Basics of the physical network method 
 
The basics of the network method requires describing the physical components in the 
system using variables particular to the domain that are analogous to voltage and current for 
electrical systems.  These variables can be determined by examining the flows of energy 
into and out of the component.  For example, if we look at a DC motor, the component (in its 
most basic form) involves two physical domains – electrical and mechanical.   
 
The electrical power can be represented as: 
 P = v i   (1) 
 
The mechanical power entering or exiting the component can be expressed as: 
 P = T ω  (2) 
The variables used in these equations are analogous to each other.  Understanding the 
relationship between the variables in these domains makes it possible to apply constraints to 
this system for each domain in order to develop the equations for the system.   
 

 
Figure 6: Diagram of DC Motor             Figure 7 Equations           Figure 8: Diagram of 
 showing physical network variables      representing energy physical network element 
                                                               flowing in and out             with across and through  
                                                               of motor                            variables labeled 
 
Kirchoff‟s voltage law states that the directed sum of the electrical potential differences 
around any closed circuit must be zero.  Stated in a different way, this implies that the 



voltage of all components‟ ports attached to an electrical node must be the same.  This can 
be related other physical domains.  For a hydraulic node, the pressure at all of the 
components‟ ports attached to that node must be the same.  In our example of a DC motor, 
the velocity at all of the components„ ports attached to a mechanical node must be the same.  
These variables (pressure, velocity) are analogous to voltage in an electrical circuit, and in 
physical networks they are often referred to as across variables. 
 
Kirchoff‟s current law states that the sum of currents flowing towards an electrical node is 
equal to the sum of currents flowing away from that node.  This can be related to other 
physical domains as well.  At a hydraulic node, the amount of fluid flowing into that node 
must be equal to the amount of fluid flowing out of that node.  This constraint must be 
applied to all components‟ ports attached to that hydraulic node.  Similarly, for a mechanical 
node, the forces (or torques) applied in one direction at a node minus the forces (or torques) 
applied in the opposite direction at that node must be equal to zero.  These variables (flow 
rate, force/torque) are analogous to current in an electrical circuit, and in physical networks 
they are often referred to as through variables. 

 
Figure 9: Diagram representing two nodes of a physical network representation.   
Applying Kirchoff’s laws to these nodes allows the software to determine the equations  
for the entire system. 
 
Expressing the mathematical model for a component in terms of these variables makes it 
possible to formulate the equations for the entire system by applying the above laws as 
constraints to each node.  The fact that this analogy can be applied to each physical domain 
enables engineers to create components spanning multiple physical domains quite easily. 
 
 

4. Implementing Physical Networks in the Simscape Language 
 
A basic understanding of physical networks makes it easy to understand how such models 
can be created.  Looking at a specific implementation of this technique makes it easy to see 
how this theory can be applied to actual engineering problems.  We will look at a model of a 
DC motor implemented in the Simscape language in order to see one concrete example of 
the physical network method for modeling physical systems. 
 
In the case of the DC motor, we have definitions of two physical domains – mechanical and 
electrical.  For each of those domains, we need to define the across and through variables, 
including their units.  Those definitions, implemented in the Simscape language, is shown 
below. 
  



 
 
 
 
 
 
 
 

 

 

 
 
 
Figure 10: Declaration of the electrical             Figure 11: Declaration of the rotational  
  domain in the Simscape language                 mechanical domain in the Simscape language 
 
The component definition will need to make use of these variables in order to define the 
equations.  It will also have to define the relationship between these variables and the ports 
(the connections to the nodes) in order for the tool to be able to properly apply the 
constraints.  In addition, other internal variables may be needed for the equations.  The 
definition for the ports, which references these domain definitions, is shown here: 
 
 
 
 
 
 
 
 
 
Figure 12: Declaration of the electrical and mechanical ports of a DC motor  
  in the Simscape language 
 
With these port definitions, the relationship between the ports and the across and through 
variables is expressed in the Simscape language as shown below: 
 
 
 
 
 
 
 
 
 
 
 
 Figure 13: Setup section of Simscape component file, containing the declaration of the 
relationship between the variables and nodes in the Simscape language.  This section also 
leverages MATLAB functions to check a parameter value and inform the user if it is out of 
range. 
 
  

domain electrical 

 

  variables 

    v = { 1 , 'V' }; 

  end 

  

  variables(Balancing = true) 

    i = { 1 , 'A' }; 

  end 

  

end 

domain rotational 

 

  variables 

    w = { 1 , 'rad/s' }; 

  end 

  

  variables(Balancing = true) 

    t = { 1 , 'N*m' }; 

  end 

  

end 

 

nodes 

  p = foundation.electrical.electrical; % +:right  

  n = foundation.electrical.electrical; % -:left  

  R = foundation.mechanical.rotational.rotational; % R:right 

  C = foundation.mechanical.rotational.rotational; % C:left  

end  

 

 

function setup 

  through( tq, R.t, C.t ); % through variable tq from r to c 

  across( w, R.w, C.w ); % across variable w from r to c 

  through( i, p.i, n.i ); % through variable i from p to n 

  across( v, p.v, n.v ); % across variable v from p to n 

  if Rwind <= 0 

    error('Resistance must be greater than zero') 

  end 

end 

 

 



Useful models of physical components will have parameters that correspond to physical 
quantities, ideally the kinds of quantities that will be found on industry data sheets.  These 
parameters should also be defined in the component definition file so that they can be 
integrated with the component equations.  The parameters of a DC motor implemented in 
the Simscape language are shown below: 
 
 
 
 
 
 
 
 
 
 
Figure 14: Declaration of the component parameters for a DC Motor  
  in the Simscape language 
 
In each case, the units for the parameter are defined along with a realistic default value, in 
order to provide the user a realistic starting point. 
 
Implementing the equations is obviously a critical part of defining the component.  As has 
been explained, in order to be reusable the equations need to be expressed as a 
mathematical relationships that are valid for the component and are independent of what 
other components it is connected to.  And, in order to be able to properly express DAEs, 
these expressions must be able to represent simultaneous sets of equations and not simply 
input/output relationships or assignment.  In the Simscape language, the operator “==” is 
used to represent a mathematical relationship that is not based on assignment.  The 
equations for a DC motor based on the through and across variables defined above are 
shown below: 
 
 
 
 
 
 
 
Figure 15: Declaration of component equations for a DC Motor in the Simscape language 
 
These mathematical relationships are evaluated simultaneously at each step of the 
simulation.  The techniques used to formulate the equations for the system is explained in 
the following section.  
  

parameters 

  Kt = {0.0637 'N*m/A'}; % Torque constant 

  Ke = {0.0637 'V/(rad/s)'}; % Back EMF Constant 

  Rwind = {0.048 'Ohm'}; % Winding Resistance 

  Lwind = {1600e-6 'H'}; % Winding Inductance 

  J = {0 'g*cm^2'}; % Motor Inertia 

  B = {1e-8 'N*m/(rad/s)'}; % Motor Damping 

end 

 

 

  equations 

      w == theta.der; 

      v == Ke*w + i*Rwind + Lwind*i.der;  % Motor equations 

      tq == -Kt*i + B*w + J*w.der;         

  end 

 

 



5. Simscape Simulations 
 
The process of converting the physical network diagram into a set of DAEs that can be 
integrated is shown in the diagram below:   
 

 
Figure 16: Flowchart describing the steps of converting a physical network diagram  
   into system equations. 
 
Once the physical network diagram is constructed in the diagram editor, the first step 
Simscape must do is to analyze the components in the network and their connections in 
order to convert it into what is known as a structural model.  The structural model is the 
framework of the physical network.  The equations, parameters, and initialization for the 
components is added to this framework to create a behavioral model of the system.  The 
behavioral model represents the set of DAEs symbolically at the equation level and has all of 
the information necessary to describe the system. Further steps are necessary to ensure a 
robust and quick simulation. 
 
The system of equations contained in the behavioral model are analyzed and reduced via 
symbolic simplification methods.  The index of the system of equations is reduced after all 
possible simplifications have been made.  This is done by first identifying the higher index 
constraint equations and then differentiating these equations in time. With this technique, 
Simscape can reduce many common classes of index-2 problems to index-1 and index-0 
problems.  Once the index has been reduced, the resulting system is presented to the 
integrator as a DAE or ODE depending on the type of integrator.  The integrator integrates 
the system to generate the simulation results.  
 
It is important to note that the equation formulation described here results in a set of 
equations that can be solved simultaneously.  Because of this, there is no need to use an 
algebraic loop solver to integrate these equations or to add dynamics to your system to 
break algebraic loops.  This is a significant advantage over an input-output approach to 
modeling physical systems, for the resulting simulation is a more efficient, more robust, and 
more exact solution. 
 

6. Conclusion 
 
As more engineers rely upon Model-Based Design to improve their development process, 
the model of the physical system (plant model) is becoming increasingly important.  
Engineers are learning that it is possible to combine in one environment methods best suited 
for modeling physical systems (physical networks) and control systems (input-output 



methods).  The Simscape language is an option that allows engineers to model the physical 
system while leveraging their MATLAB and Simulink experience and legacy models, as well 
as permitting system level optimization. 
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