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MATLAB’s Magical Mystery Tour

Ancient matrices with mystical powers

agic squares? Why does MATLAB have magic squares? "This particular permutation
Even though their origins lie in centuries old recreational appears in the Renaissance engrav-
mathematics, they turn out to be very useful today for ing Melancolia IT by the German
explaining features of MATLAB and for illustrating concepts artist and amateur mathematician
from linear algebra. Albrecht Durer. It allowed him to
An #-by-n magic square is an array containing the integers slip in the date, 1514, when he did
from 1 to 7, arranged so that all the rows and columns have the the work.
same sum. For each 7 > 2, there are lots of magic squares of For a magic square of order #, the
order 7, but MATLAB’s function magic (n) generates a particu- magic sum is sum(1:n~2) /n,
lar one. Here is the 4-by-4 magic square which turns out to be (17’ + )/2. Let’s

call this value ft,. So 3 = 15, py = 34, ls = 65, etc. Here is our first

A = magic(4) exercise for the reader: explain why #” + # is always divisible by 2.
16 2 3 13 Many other MATLAB functions return f, when applied to
5 11 10 8 magic(n). The function norm(A) measures the maximum
9 7 6 12 possible magnification of the linear transformation represented
4 14 15 1 by A. The one and infinity norms, norm (A, 1) and

norm(A,inf), are simply the largest row and column sums. So
they are obviously equal to the magic sum. But the Euclidean
sum(A) = norm, denoted by norm(A,2) or simply norm(A), also turns

34 34 34 34 out to be f1,. We leave the explanation as another exercise,
although this one is nontrivial.

Eigenvalues and eigenvalues are at the heart of many of
MATLAB’s matrix operations. What is the largest eigenvalue of
A = magic(n)? You are well advised to guess that it’s the
magic sum, i = U, The fact that u is some eigenvalue is easy to
see. It’s because the vector of all ones, @ = ones(n,1),isan

The function sum(A) forms the column sums. Here it produces

This shows that all the columns have the same sum. But why is
it 34? Because sum(1:16) /4 is 34. For a 4-by-4 magic square,
the magic sum has to be 34.

The row sums can be obtained by transposing the matrix with
A’; summing the columns of A’ and then transposing the result.

sum(A’) ' eigenvector. The matrix-vector multiplication, A*e, is simply
34 34 34 34 another way of computing the row sums and
MATLAB’s magic squares are among the “special” magic A*e = p*e

squares whose diagonals also have the magic sum. The principal

diagonal goes from the upper right to the lower left. Its sum is The fact that 1, is actually the /argest cigenvalue is an illustra

tion of the Perron-Froebenius theorem, which is a deep theorem
sum(diag(A)) about eigenvalues of matrices with positive elements.
34 Singular values are another powertul tool in MATLAB’s matrix
arsenal. Sure enough, the largest singular value,
max (svd(magic(n))), [
is also u,. Explaining why
that is true is another

To get the other, “antidiagonal,” we use a function originally
intended for reorienting graphics arrays.

B = fliplr(A)

13 3 2 16 exercise.
8 10 11 5 What is known about
2 6 7 9 the eigenvalues and sin-
. 15 14 4 gular values other than
sum(diag(B)) the largest, the Perron
34 root? Well I, for one,

don’t know very much. If
anybody can provide
interesting characteriza-

Row and columns permutations preserve the magic property.
Let’s swap the second and third columns.

A(:,[1 3 2 4]) tions of these values, I'd
16 3 2 13 like to hear about it.
5 10 11 8 Now for a bit of a sur-
9 6 7 12 prise. What is the matrix = 14
4 15 14 1 inverse of magic(n)? It : R
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depends upon whether # is odd or even. For odd #, the matrices
magic (n) are well conditioned. The matrices

X = inv(magic(n))

do not have positive, integer entries, but they do have equal row
and column sums.

But, for even #, the determinant, det (magic(n)), is zero,
and the inverse does not exist. f A = magic(4), trying to
compute inv (A) produces an error message.

With null(A) or rref (A), we can find that the vector
v = [1 3 -3 -1]’ satisfies A*v = 0. So there is a linear
dependence among the columns of A

A(:,1) + 3*A(:,2) = 3*A(:,3) + A(:,4)

The rank of a matrix is the number of linearly independent rows
and columns. A z-by-# matrix is singular if its rank, 7, is not
equal to its order. Here is a table of the rank of the magic
squares up to order 20, generated with

for n = 3:20, r(n) = rank(magic(n)); end
n=3456789 10 11 12 13 14 15 16 17 18 19 20
r=3355739 711 313 915 3 17 11 19 3

Do you see the pattern? Maybe a bar graph will help.

rank(magic(n))

Here is the pattern.

n rank
odd n
even, not divisible by 4 n/2+2
divisible by 4 3

The explanation for this intriguing behavior lies in the algorithms
MATLAB uses to generate magic squares. I learned about the
algorithm for odd order when I was in junior high school and [
spent many idle hours in band practice generating magic squares.

Maybe you already know the algorithm, or can see it in
magic(5).

17 24 i 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

The integers from 1 to 25 are inserted along diagonals, starting in
the middle of the first row and heading in a northeasternly direc-
tion. When you go off an edge of the matrix, which you do at
the very first step, continue from the opposite edge. When you
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bump into a cell that is already occupied, drop down one row
and continue. Programming this algorithm is a good exercise,
although it is tricky to vectorize. Those of you who are spread-
sheet whizzes might try it there.

I find it plausible, but I don’t have a formal proof, that the
algorithm for odd # generates a nonsingular matrix. It just seems
highly unlikely that any linear dependencies among the rows or
columns would be created by this process.

The algorithms for even order are another matter. There are
two, one for “singly even”— # is divisible by 2, but not by 4 —
and one for “doubly even.” I didn’t learn about these algorithms
until I wanted to include magic squares in the first MATLAB.

If # is singly even, then #/2 is odd and magic(n) can be
constructed from four copies of magic(n/2). For example,
magic (10) is obtained from A = magic(5) by forming

[ A A+50

A+75 A+25]

This might be called a “Kronecker sum” of A and 25*M where
M+1 = [1 3; 4 2] is the closest we can get to a magic
square of order 2. The column sums are all OK because sum(A)
+ sum(A+75) equals sum(A+50) + sum(A+25). Butthe
rows sums are not quite right. The algorithm must finish by
doing a few swaps of pieces of rows to clean up the row sums.

The Kronecker sum is singular. It’s rank is only #/2. The
partial row operations boost this to #/2+2, but do not scramble
the elements enough to generate an invertible matrix.

Here is your last assignment for today. Investigate magic (n)
when 7 is divisible by 4, so both # and #/2 are even and neither
of the above algorithms is applicable. Since magic () is a built-
in function, you'll have to reverse engineer MATLAB’s algo-
rithm. Then explain why the rank is always 3.

It’s time for a little graphic relief. Shown below are

surf(magic(9))
surf(magic(11))

surf(magic(10))
surf(magic(12))

aes net0

You can see the three different cases — on the left, the upper
right, and the lower right. If you increase of each of the orders
by 4, you get more cells, but the global shapes remain the same.
The odd # case on the left reminds me of Origami.

Well, there’s more, but we’ll leave that for another place. Just
remember this. Durer and his friends in the 16th century were
right. These squares really are magic.




