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Abstract 

This white paper presents a detailed methodology for estimating and analyzing the term structure of 

interest rates using a regression-based framework. Drawing from the work of Adrian, Crump, and 

Moench (2013), the approach enables the estimation of affine term structure models without 

requiring numerical optimization. Instead, the model is estimated entirely through a sequence of 

linear regressions, making it computationally tractable even with high-dimensional yield data and 

multiple pricing factors. The methodology is implemented in MATLAB® using a function that 

processes historical yield data, performs principal component analysis, estimates factor dynamics, 

and decomposes observed yields into expectations and term premia. The practical implementation 

is illustrated using both U.S. Treasury yields and U.K. government bond data, demonstrating the 

model's flexibility and robustness. 

Introduction 

The term structure of interest rates encapsulates the relationship between the yield of zero-coupon 

bonds and their time to maturity. Modeling this relationship is central to understanding monetary 

policy expectations, macroeconomic risks, and fixed-income asset pricing. Traditional term structure 

models, particularly those grounded in affine frameworks, provide a theoretically consistent way to 

model interest rate dynamics and to compute term premia—the excess returns investors demand 

for holding long-term bonds instead of rolling over short-term instruments. 

Affine models typically assume that bond yields are linear functions of underlying latent or 

observable state variables. The evolution of these state variables follows a vector autoregressive 

model, while the market prices of risk associated with each factor determine the term premia. In 

maximum likelihood implementations, such models are estimated by fitting observed yields directly, 

subject to the no-arbitrage conditions derived from dynamic asset pricing theory. However, these 

implementations are often computationally intensive and sensitive to specification assumptions. 

Adrian, Crump, and Moench (2013) propose an alternative estimation methodology that sidesteps 

many of these difficulties. Their approach decomposes the model into three sequential linear 

regression steps. By focusing on excess bond returns and their relation to observable pricing 

factors, their method achieves empirical tractability and theoretical consistency. This paper 

implements their methodology in MATLAB and applies it to real-world yield data to demonstrate its 

empirical performance and interpretive power. 

Theoretical Framework 

Overview of the ACM Model 

The ACM model assumes that bond yields are affine functions of a vector of state variables , 

which are typically extracted from the yield curve using principal component analysis (PCA). These 

state variables evolve over time according to a first-order vector autoregressive process: 

https://www.newyorkfed.org/research/staff_reports/sr340.html
https://www.newyorkfed.org/research/staff_reports/sr340.html
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where  is a vector of intercepts,  is a transition matrix, and  is a vector of shocks that are 

conditionally Gaussian with covariance matrix . 

The key insight of the ACM methodology is that the excess holding period return on a bond of 

maturity  is driven by its exposure to these shocks and by the market prices of risk. The excess 

return is modeled as: 

 

where  is the factor loading for bond maturity ,  and  govern the market prices of risk, 

and  is a return pricing error term. 

This formulation implies that the term premium—the difference between the model-implied yield and 

the risk-neutral expected short rate—can be extracted from observed returns and factor innovations 

using regression techniques. 

Three-Step Estimation Procedure 

The ACM estimation proceeds in three steps: 

1. Estimation of Factor Dynamics: A vector autoregression (VAR) is fitted to the pricing 

factors . The residuals from this VAR provide estimates of factor innovations . 

2. Excess Return Regression: Excess returns on bonds of various maturities are regressed 

on lagged factors and contemporaneous factor innovations. This regression yields the factor 

loadings , intercepts, and pricing errors. 

3. Estimation of Market Prices of Risk: The estimated exposures to shocks and factor 

loadings are used in a cross-sectional regression to estimate the market prices of risk  

and . These parameters define the stochastic discount factor used to price bonds and 

compute fitted yields and term premia. 

This procedure yields closed-form estimators and allows for inference using asymptotic distributions 

derived from OLS theory. No numerical maximization is required, which contrasts with traditional 

affine term structure models estimated by likelihood-based methods. 

MATLAB Implementation 

We created a MATLAB implementation of the methodology using two datasets to illustrate the 

application of the ACM model. The first is a U.S. Treasury dataset based on Gürkaynak, Sack, and 

Wright (2007), while the second is a Bank of England dataset of zero-coupon yields. 
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The script loads the historical yield data, selecting a start date for analysis (e.g., January 1985), and 

interpolates missing values. The resulting yields variable is a timetable containing yield 

observations across a grid of maturities. The function then carries out the estimation of the model. It 

performs PCA on the yields to extract factors, estimates the VAR for factor dynamics, and 

regresses excess returns to infer loadings and market prices of risk. 

The output decomposition includes the fitted yield curve (Fitted), the risk-neutral expected yields 

(RiskNeutralExpected), and the estimated term premium (TermPremium) for each maturity. 

The decomposition results can be visualized across different maturities to assess model fit and 

economic interpretation. For the 2-, 5-, and 10-year maturities, one can plot the actual yield, fitted 

yield, risk-neutral yield, and term premium over time: 

 

This allows the analyst to see how well the model fits yields and to study the time variation in the 

term premium – a key input for understanding risk compensation in bond markets. 

Application to U.K. Yield Data 

The same model is applied to zero-coupon yields from the U.K. government bond market. The zero-

coupon data is imported from a spreadsheet and preprocessed in a similar way as the U.S. data. 

The same estimation and visualization procedure is used, demonstrating the model’s portability 

across different markets. 

A time-series chart showing the evolution of the term premium for the 2-, 5-, and 10-year U.K. 

government bonds is shown below. This figure can reveal episodes of monetary policy tightening or 

loosening as reflected in the risk compensation required by investors. 
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The root mean squared error (RMSE) between the observed and fitted yields provides a summary 

metric of model accuracy. This metric can be plotted as a function of maturity to determine whether 

the model fits certain parts of the yield curve better than others. Generally, affine models tend to fit 

short and intermediate maturities more closely than the long end, where pricing errors and 

idiosyncratic factors may dominate. 

Statistical Inference and Model Diagnostics 

Estimation Accuracy and Standard Errors 

A core strength of the ACM methodology lies in the transparency and reliability of inference. All 

parameter estimates—including factor loadings , market price of risk parameters  and , and 

the VAR dynamics of pricing factors—are obtained through ordinary least squares regressions. As 

a result, standard errors are analytically tractable and asymptotically valid under standard regularity 

conditions. 

The asymptotic distribution of the estimated market price of risk vector  is given by:

 

The matrix  can be estimated consistently using the regression residuals and factor innovations. 

This allows for: 

• Hypothesis testing on whether specific factors are priced. 

• Wald tests to assess joint significance of parameters. 

• Confidence intervals for model-implied term premia. 

For example, one might test whether slope risk is priced by testing the null hypothesis 

 using the Wald statistic:  

where  is the number of restrictions (e.g., the number of rows of  corresponding to slope). 

Goodness of Fit: RMSE and Yield Pricing Errors 

Beyond coefficient significance, the model’s in-sample accuracy is evaluated using the root mean 

squared error (RMSE) between observed and fitted yields. In practice, the ACM model achieves 

RMSEs on the order of 1–2 basis points for intermediate maturities. Standard deviations of yield 

pricing errors remain well below 5 basis points, indicating a tight fit to observed term structures. 

Autocorrelation in pricing errors is another diagnostic. The ACM framework shows that while yield 

pricing errors exhibit serial correlation—particularly at longer maturities—return pricing errors do 

not, affirming the model’s validity for return-based estimation. 
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Macroeconomic Interpretation of Term Premia 

Components of Long-Term Yields 

The decomposition provided by the ACM model distinguishes between the expected path of 

future short rates (the risk-neutral yield), which reflects investor expectations of monetary policy 

and the term premium, which captures the additional compensation required by investors for 

interest rate and macroeconomic uncertainty. 

This separation is particularly useful for interpreting yield movements around policy shifts. For 

instance, a decline in long-term yields during a period of rising short rates may reflect a falling term 

premium rather than an expectation of future rate cuts. 

Time Variation in Risk Compensation 

By examining the estimated  matrix, one can observe how the price of risk varies over time and in 

response to macroeconomic variables. For example, Adrian et al. (2013) find that the second and 

fifth principal components—often associated with slope and a "macro risk" factor—play significant 

roles in driving expected excess returns. A steep yield curve or elevated macro uncertainty 

increases the compensation investors demand for bearing duration risk. 

In MATLAB, these interpretations can be made concrete by analyzing the time series of the term 

premium and correlating it with external indicators such as inflation expectations, real GDP growth 

and central bank balance sheet expansions. 

Such overlays help assess whether changes in the term premium are aligned with macroeconomic 

fundamentals or driven by technical factors. 

Comparative Analysis with Alternative Models 

Likelihood-Based Affine Models 

Traditional affine term structure models are estimated using maximum likelihood techniques, often 

requiring complex numerical optimization and Kalman filtering to handle latent factors and 

measurement error. While theoretically elegant, these methods suffer from high computational 

costs, sensitivity to initial conditions and convergence criteria, difficulty scaling to more than three or 

four pricing factors. 

In contrast, the ACM model estimates all parameters using linear regressions and observable 

factors. This approach preserves economic relationships and gains in scalability and diagnostic 

transparency. 

In benchmark tests, ACM estimation achieves comparable in-sample fit to ML models while being 

orders of magnitude faster to estimate. Moreover, it is less susceptible to overfitting due to fewer 

moving parts and a more modular structure. 
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Cochrane-Piazzesi Return Forecasting Model 

The Cochrane-Piazzesi (CP) model constructs a single linear combination of forward rates that 

forecasts bond excess returns. This return-forecasting factor is highly interpretable and 

parsimonious but assumes a very specific structure for the price of risk: Level is the only priced 

factor, and time variation in risk premia is entirely driven by a single predictor. 

When re-estimated within the ACM framework, the CP factor is found to be statistically significant, 

particularly in explaining the time variation of level risk. However, the full five-factor ACM model 

outperforms the CP specification in cross-sectional pricing accuracy, out-of-sample forecasting of 

future short rates and fitting long-maturity yields beyond the calibration window. 

Conclusion 

The regression-based affine term structure modeling approach introduced by Adrian, Crump, and 

Moench provides a powerful, scalable, and interpretable framework for understanding the yield 

curve and its components. When implemented in MATLAB, the model yields tight fits, plausible 

term premium dynamics, and economically intuitive results, all while avoiding the numerical 

complexity of traditional ML-based approaches. 

Its ability to handle observable factors, macro-financial predictors, and excess return dynamics 

makes it a valuable tool for central banks, institutional investors, and academics interested in 

monetary policy transmission, risk pricing, and yield forecasting. 

The MATLAB ecosystem—featuring advanced econometric functionality, effective visualizations, 

and integration with databases— makes it ideal for deploying this framework in production 

environments or research workflows. 

 

Next Step 
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