Signal Processing with Simulink
View schedule and enrollCourse Details
- What is Simulink?
- Using the Simulink interface
- Modeling single-channel and multi-channel discrete dynamic systems
- Implementing sample-based and frame-based processing
- Modeling mixed-signal (hybrid) systems
- Developing custom blocks and libraries
- Modeling condition-based systems
- Performing spectral analysis with Simulink
- Integrating filter designs into Simulink
- Modeling multirate systems
- Incorporating external code
- Automating modeling tasks
Day 1 of 3
What is Simulink?
Objective: Get an introduction to Simulink.
- System Design Process
- Model-Based Design with Simulink
- What Can You Do with Simulink?
- Simulink add-ons
Creating and Simulating a Model
Objective: Explore the Simulink interface and block libraries. Build a simple model and analyze the simulation results.
- Creating and editing a Simulink model
- Defining system inputs and outputs
- Simulating the model and analyzing results
- Performing automatic initialization of Simulink model parameters
- Visualizing signals with signal viewers
Modeling Discrete Dynamic Systems
Objective: Model discrete dynamic systems, and visualize frame-based signals and multichannel signals using a scope.
- Modeling a discrete system with basic blocks
- Finding sample times of block outputs
- Using frames in your model
- Using buffers
- Comparing frames vs. multichannel signals
- Viewing frame-based signals
- Understanding behavior of delay blocks with frame-based signals
- Working with multichannel frame-based signals
Modeling Logical Constructs
Objective: Model logical expressions. See how zero-crossing detection is used in Simulink and model simple logic in Simulink using MATLAB code.
- Modeling logical expressions
- Modeling conditional signal routing
- Understanding zero-crossing detection
- Modeling with the MATLAB Function block
From Algorithm to Model
Objective: Create a model from an algorithm specification.
- Modeling from algorithmic specifications
- Controlling model behavior under some error conditions
- Iterative algorithm development through modeling and simulation
- Verifying models against specified algorithms
Day 2 of 3
Mixed-Signal Models
Objective: Model mixed-signal systems.
- What is a mixed-signal model?
- Modeling an analog-to-digital Converter (ADC) with aperture jitter and nonlinearity
- Case study: Modeling TI's ADS62P29 ADC
Solver Selection
Objective: Choose the right solver for a Simulink model.
- Understanding the Simulink solver
- Solving simple models
- Solving models with discrete and continuous states
- Solving models with multiple rates
- Fixed-step and variable-step solvers
- Choosing a continuous-state system solver
- Handling zero crossings
- Handling algebraic loops
Subsystems and Libraries
Objective: Create custom blocks in Simulink, apply masks, and develop custom libraries.
- Creating subsystems
- Understanding virtual and atomic subsystems
- Using a subsystem as a model component
- Masking subsystems
- Creating custom block libraries
- Working with and modifying library blocks
- Adding custom libraries to the Simulink Library Browser
Conditional Subsystems
Objective: Model systems with parts that are executed conditionally.
- Modeling conditionally executed subsystems
- Creating enabled subsystems
- Creating triggered subsystems
- Working with an example using the AGC model
Spectral Analysis
Objective: Perform spectral analysis in the Simulink environment, and use spectrum computation in an algorithm.
- Performing spectral analysis with the Spectrum Analyzer block
- Choosing spectral analysis parameters
- Analyzing power spectrum of a fan motor noise
- Building a spectral classifier for speech
- Determining frequency response of a discrete system
Day 3 of 3
Designing and Applying Filters
Objective: Incorporate filters in a model, and explore different ways filters can be designed and implemented in a Simulink model.
- Designing filters in Simulink
- Modeling filters in fixed-point
Multirate Systems
Objective: Model multirate systems. Resample data and explore multirate filter blocks.
- Modeling multirate systems
- Exploring blocks for multirate signal processing
- Resampling oversampled data
- Designing and implementing anti-imaging and anti-aliasing filters
- Using multirate filter blocks
- Case study: Converting professional audio to CD format
- Converting the design to fixed point
Incorporating External Code
Objective: Import or incorporate custom or external MATLAB and C code into a Simulink model.
- Working with custom and external code
- Incorporating MATLAB code with the MATLAB Function block
- Incorporating C code with the C Caller block
Combining Models into Diagrams
Objective: Explore model integration, an important topic for large-scale projects in which several developers are developing different portions of a large system.
- Exploring model referencing and subsystems
- Setting up a model reference
- Setting up model reference arguments
- Exploring model reference simulation modes
- Viewing signals in referenced models
- Browsing model reference dependency graph
Automating Modeling Tasks
Objective: Control and run Simulink models from the MATLAB command line.
- Automating test runs
- Checking and modifying parameter settings
- Finding blocks with specific parameter values
- Constructing and modifying block diagrams
Level: Intermediate
Prerequisites:
- MATLAB Fundamentals and basic knowledge of digital signal processing
Duration: 3 days
Languages: English