Developing an Autonomous Cobot with Multimodal Control Using Model Based Design
Kazuki Ono, KYOCERA Corporation
In recent years, diverse customer needs have led to an increase in the demand of a wide variety of products, services, and solutions. Creating a human-robot coworking environment to satisfy these customer needs requires a flexible robotics system configuration.
Current robotic systems can be inflexible because robots are typically designed to carry out predetermined actions based on specific instructions. To cope with this problem, we are developing a robot that can perform multimodal control by combining the arm, hand, camera, and other sensor information. By comprehensively judging this information, an adaptive dynamic control of the robotics system can be constructed. Thus, flexible robotics movement can be performed in various products, tasks, services, and solutions.
In this session, we will introduce our development of a robot hand which incorporates multiple sensors. The robot hand and its controller were designed and verified using Model-Based Design with MATLAB® and Simulink®. Specifically, Simscape Multibody™ was used to model the motor for the robot hand and simulate the contact force acting between the robot hand and the grasping object. By conjoining the virtual and real control structure of the robot hand, we could seamlessly implement the control system built by Simulink into the hardware. At the end of the session, we will show the modeling of the robot arm and its trajectory planning, the practical example of linking the virtual robot arm controller and robot arm movement in reality, and the integrated simulation of robot arm and hand using Robotics System Toolbox™ and ROS Toolbox. These autonomous coworking robot development processes can lead to the realization of cyber-physical systems (CPS).
Published: 28 May 2022