试验管理器
通过扫描一系列超参数值或使用贝叶斯优化,找到神经网络的最佳训练选项。使用内置函数 trainNetwork
或定义您自己的自定义训练函数。通过并行运行试验,同时测试不同训练配置。使用训练图监控进度。使用混淆矩阵和自定义度量函数来评估经过训练的网络。通过分类和过滤完善试验。使用注释来记录观测值。
App
试验管理器 | Design and run experiments to train and compare deep learning networks (自 R2020a 起) |
对象
experiments.Monitor | Update results table and training plots for custom training experiments (自 R2021a 起) |
函数
groupSubPlot | Group metrics in experiment training plot (自 R2021a 起) |
recordMetrics | Record metric values in experiment results table and training plot (自 R2021a 起) |
updateInfo | Update information columns in experiment results table (自 R2021a 起) |
主题
- Create a Deep Learning Experiment for Classification
Train a deep learning network for classification using Experiment Manager. (自 R2020a 起)
- Create a Deep Learning Experiment for Regression
Train a deep learning network for regression using Experiment Manager. (自 R2020a 起)
- Use Experiment Manager to Train Networks in Parallel
Run multiple simultaneous trials or one trial at a time on multiple workers. (自 R2020b 起)
- Offload Deep Learning Experiments as Batch Jobs to a Cluster
Run experiments on a cluster so you can continue working or close MATLAB®. (自 R2022a 起)
- Evaluate Deep Learning Experiments by Using Metric Functions
Use metric functions to evaluate the results of an experiment. (自 R2020a 起)
- Tune Experiment Hyperparameters by Using Bayesian Optimization
Find optimal network hyperparameters and training options for convolutional neural networks. (自 R2020b 起)
- Use Bayesian Optimization in Custom Training Experiments
Create custom training experiments that use Bayesian optimization. (自 R2021b 起)
- Generate Experiment Using Deep Network Designer
Use Experiment Manager to tune the hyperparameters of a network trained in Deep Network Designer.
- Keyboard Shortcuts for Experiment Manager
Navigate Experiment Manager using only your keyboard.
疑难解答