This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.


Hard-limit transfer function

Graph and Symbol


A = hardlim(N,FP)


hardlim is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

A = hardlim(N,FP) takes N and optional function parameters,


S-by-Q matrix of net input (column) vectors


Struct of function parameters (ignored)

and returns A, the S-by-Q Boolean matrix with 1s where N ≥ 0.

info = hardlim('code') returns information according to the code string specified:

hardlim('name') returns the name of this function.

hardlim('output',FP) returns the [min max] output range.

hardlim('active',FP) returns the [min max] active input range.

hardlim('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

hardlim('fpnames') returns the names of the function parameters.

hardlim('fpdefaults') returns the default function parameters.


Here is how to create a plot of the hardlim transfer function.

n = -5:0.1:5;
a = hardlim(n);

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'hardlim';


hardlim(n) = 1 if n ≥ 0

                         0 otherwise

See Also


Introduced before R2006a