Main Content

Conduct Lagrange Multiplier Test

This example shows how to calculate the required inputs for conducting a Lagrange multiplier (LM) test with lmtest. The LM test compares the fit of a restricted model against an unrestricted model by testing whether the gradient of the loglikelihood function of the unrestricted model, evaluated at the restricted maximum likelihood estimates (MLEs), is significantly different from zero.

The required inputs for lmtest are the score function and an estimate of the unrestricted variance-covariance matrix evaluated at the restricted MLEs. This example compares the fit of an AR(1) model against an AR(2) model.

Compute Restricted MLE

Obtain the restricted MLE by fitting an AR(1) model (with a Gaussian innovation distribution) to the given data. Assume you have presample observations (y-1, y0) = (9.6249,9.6396).

Y = [10.1591; 10.1675; 10.1957; 10.6558; 10.2243; 10.4429;
     10.5965; 10.3848; 10.3972;  9.9478;  9.6402;  9.7761;
     10.0357; 10.8202; 10.3668; 10.3980; 10.2892;  9.6310;
      9.6318;  9.1378;  9.6318;  9.1378];
Y0 = [9.6249; 9.6396];

Mdl = arima(1,0,0);
EstMdl = estimate(Mdl,Y,'Y0',Y0);
 
    ARIMA(1,0,0) Model (Gaussian Distribution):
 
                 Value     StandardError    TStatistic     PValue  
                _______    _____________    __________    _________

    Constant     3.2999        2.4606         1.3411        0.17988
    AR{1}       0.67097       0.24635         2.7237      0.0064564
    Variance    0.12506      0.043015         2.9074      0.0036441

When conducting an LM test, only the restricted model needs to be fit.

Compute Gradient Matrix

Estimate the variance-covariance matrix for the unrestricted AR(2) model using the outer product of gradients (OPG) method.

For an AR(2) model with Gaussian innovations, the contribution to the loglikelihood function at time t is given by

logLt=-0.5log(2πσε2)-(yt-c-ϕ1yt-1-ϕ2yt-2)22σε2

where σε2 is the variance of the innovation distribution.

The contribution to the gradient at time t is

[logLtclogLtϕ1logLtϕ2logLtσε2],

where

logLtc=yt-c-ϕ1yt-1-ϕ2yt-2σε2logLtϕ1=yt-1(yt-c-ϕ1yt-1-ϕ2yt-2)σε2logLtϕ2=yt-2(yt-c-ϕ1yt-1-ϕ2yt-2)σε2logLtσε2=-12σε2+(yt-c-ϕ1yt-1-ϕ2yt-2)22σε4

Evaluate the gradient matrix, G, at the restricted MLEs (using ϕˆ2=0 ).

c = EstMdl.Constant;
phi1 = EstMdl.AR{1};
phi2 = 0;
sig2 = EstMdl.Variance;

Yt = Y;
Yt1 = [9.6396; Y(1:end-1)];
Yt2 = [9.6249; Yt1(1:end-1)];

N = length(Y);
G = zeros(N,4);
G(:,1) = (Yt-c-phi1*Yt1-phi2*Yt2)/sig2;
G(:,2) = Yt1.*(Yt-c-phi1*Yt1-phi2*Yt2)/sig2;
G(:,3) = Yt2.*(Yt-c-phi1*Yt1-phi2*Yt2)/sig2;
G(:,4) = -0.5/sig2 + 0.5*(Yt-c-phi1*Yt1-phi2*Yt2).^2/sig2^2;

Estimate Variance-Covariance Matrix

Compute the OPG variance-covariance matrix estimate.

V = inv(G'*G)
V = 4×4

    6.1431   -0.6966    0.0827    0.0367
   -0.6966    0.1535   -0.0846   -0.0061
    0.0827   -0.0846    0.0771    0.0024
    0.0367   -0.0061    0.0024    0.0019

Numerical inaccuracies can occur due to computer precision. To make the variance-covariance matrix symmetric, combine half of its value with half of its transpose.

V = V/2 + V'/2;

Calculate Score Function

Evaluate the score function (the sum of the individual contributions to the gradient).

score = sum(G);

Conduct Lagrange Multiplier Test

Conduct the Lagrange multiplier test to compare the restricted AR(1) model against the unrestricted AR(2) model. The number of restrictions (the degree of freedom) is one.

[h,p,LMstat,crit] = lmtest(score,V,1)
h = logical
   0

p = 
0.5787
LMstat = 
0.3084
crit = 
3.8415

The restricted AR(1) model is not rejected in favor of the AR(2) model (h = 0).

See Also

Objects

Functions

Related Examples

More About