ecmlsrmle
Least-squares regression with missing data
Syntax
Description
[
estimates a least-squares regression model with missing data. The model has the
formParameters
,Covariance
,Resid
,Info
] = ecmlsrmle(Data
,Design
)
for samples k = 1, ... , NUMSAMPLES
.
ecmlsrmle
estimates a
NUMPARAMS
-by-1
column vector of model
parameters called Parameters
, and a
NUMSERIES
-by-NUMSERIES
matrix of
covariance parameters called Covariance
.
ecmlsrmle(Data,Design)
with no output arguments plots the
log-likelihood function for each iteration of the algorithm.
[
estimates a least-squares regression model with missing data using optional
arguments.Parameters
,Covariance
,Resid
,Info
] = ecmlsrmle(___,MaxIterations
,TolParam
,TolObj
,Param0
,Covar0
,CovarFormat
)
Input Arguments
Output Arguments
References
[1] Dempster A, P., N.M. Laird, and D. B. Rubin. “Maximum Likelihood from Incomplete Data via the EM Algorithm.” Journal of the Royal Statistical Society. Series B, Vol. 39, No. 1, 1977, pp. 1–37.
[2] Roderick J., A. Little, and Donald B. Rubin. Statistical Analysis with Missing Data., 2nd Edition. John Wiley & Sons, Inc., 2002.
[3] Sexton J. and Anders Rygh Swensen. “ECM Algorithms that Converge at the Rate of EM.” Biometrika. Vol. 87, No. 3, 2000, pp. 651–662.
[4] Xiao-Li Meng and Donald B. Rubin. “Maximum Likelihood Estimation via the ECM Algorithm.” Biometrika. Vol. 80, No. 2, 1993, pp. 267–278.
Version History
Introduced in R2006a