Main Content

Pressure Relief Valve (TL)

Pressure relief valve in a thermal liquid network

  • Pressure Relief Valve (TL) block

Libraries:
Simscape / Fluids / Thermal Liquid / Valves & Orifices / Pressure Control Valves

Description

The Pressure Relief Valve (TL) block represents a valve that relieves excess pressure in a thermal liquid network. The valve remains closed when the pressure is less than a specified value. When this pressure is met or surpassed, the valve opens. This set pressure is either a threshold pressure differential over the valve, between ports A and B, or between port A and atmospheric pressure. A control pressure above the set pressure causes the valve to gradually open, which allows the fluid network to relieve excess pressure.

Pressure Control

The normalized pressure, p^, controls the valve opening area when Opening parameterization is Linear - Area vs. pressure. The normalized pressure is

p^=pcontrol-psetpmax-pset,

where:

  • pcontrol is the control pressure, which depends on the value of the Pressure control specification parameter.

    When you set Pressure control specification to Pressure differential, the control pressure is pA ̶ pB.

    When you set Pressure control specification to Pressure at port A, the control pressure is the difference between the pressure at port A and atmospheric pressure.

  • pset is the set pressure, which depends on the value of the Pressure control specification parameter.

    When you set Pressure control specification to Pressure differential, pset is the value of the Set pressure differential parameter.

    When you set Set pressure specification to Pressure at port A, pset is the value of the Set pressure (gauge) parameter.

  • pmax is the maximum pressure, pmax = pset + prange, where prange is the value of the Pressure regulation range parameter.

Opening Parameterization

The mass flow rate depends on the value of the Opening parameterization parameter.

Area vs. Pressure Parameterizations

When you set Set pressure control to Constant and Opening parameterization to Linear - Area vs. pressure or Tabulated data - Area vs. pressure, the mass flow rate is

m˙=CdAvalve2ρ¯PRloss(1(AvalveAport)2)Δp[Δp2+Δpcrit2]1/4,

where:

  • Cd is the value of the Discharge coefficient parameter.

  • Avalve is the instantaneous valve open area.

  • Aport is the value of the Cross-sectional area at ports A and B parameter.

  • ρ¯ is the average fluid density.

  • Δp is the valve pressure difference pApB.

The critical pressure difference, Δpcrit, is the pressure differential associated with the Critical Reynolds number, Recrit, the flow regime transition point between laminar and turbulent flow:

Δpcrit=π8Avalveρ¯(μRecritCd)2,

where μ is the dynamic viscosity of the thermal liquid.

The pressure loss, PRloss, describes the reduction of pressure in the valve due to a decrease in area. The block calculates PRloss as

PRloss=1(AvalveAport)2(1Cd2)CdAvalveAport1(AvalveAport)2(1Cd2)+CdAvalveAport.

The pressure recovery describes the positive pressure change in the valve due to an increase in area. When you clear the Pressure recovery check box, the block sets PRloss to 1.

When you set Opening parameterization to Linear - Area vs. pressure, the block calculates the opening area as

Avalve=p^(AmaxAleak)+Aleak,

where Aleak is the value of the Leakage Area parameter and Amax is the value of the Maximum opening area parameter.

This figure shows how the block controls the opening area using the linear parameterization.

Pressure differential between ports X and Y with respect to opening area for a normally closed valve using the linear parameterization

When the valve is in a near-open or near-closed position in the linear parameterization, you can maintain numerical robustness in your simulation by adjusting the Smoothing factor parameter. If the Smoothing factor parameter is nonzero, the block smoothly saturates the control pressure between pset and pmax. For more information, see Numerical Smoothing.

When you set Opening parameterization to Tabulated data - Area vs. pressure, the block calculates the opening area as

Avalve=tablelookup(pcontrol,TLU,ref,ATLU,pcontrol,interpolation=linear,extrapolation=nearest),

where:

  • pcontrol,TLU,ref = pTLU + poffset.

  • pTLU is the Pressure differential vector or Opening pressure (gauge) vector parameter, depending on the value of the Pressure control specification parameter.

  • poffset is an internal pressure offset that causes the valve to start closing when pcontrol,TLU,ref = pset.

  • ATLU is the Opening area vector parameter.

This figure shows how the block controls the opening area when Opening parameterization is Tabulated data - Area vs. pressure.

Pressure differential between ports X and Y with respect to opening area for a normally closed valve using the tabulated parameterization

Volumetric Flow Rate vs. Pressure Parameterization

When you set Set pressure control to Constant and Opening parameterization to Tabulated data - Volumetric flow rate vs. pressure, the valve opens according to the user-provided tabulated data of volumetric flow rate and pressure differential between ports A and B.

The block calculates the mass flow rate as

m˙=ρ¯V˙,

where:

  • V˙ is the volumetric flow rate.

  • ρ¯ is the average fluid density.

The block calculates the relationship between the mass flow and pressure using

m˙=Kρ¯Δp,

where

K=V˙|Δp|.

Controlled Pressure Regulation

When you set Set pressure control to Controlled, the normalized pressure is

p^=pcontrol-pspmax-ps,

where:

  • ps is the value of the signal at port Ps.

  • pmax = ps + prange, where prange is the value of the Pressure regulation range parameter.

  • pcontrol is the pressure differential between ports A and B, pA ̶ pB.

Opening Dynamics

When you set Opening dynamics to On, the block introduces a control pressure lag where pcontrol becomes the dynamic control pressure, pdyn. The instantaneous change in dynamic opening area is calculated based on the Opening time constant parameter, τ:

p˙dyn=pcontrolpdynτ.

By default, the block clears the Opening dynamics check box.

Energy Balance

The energy conservation equation in the valve is

ϕA+ϕB=0,

where:

  • ϕA is the energy flow rate into the valve through port A.

  • ϕB is the energy flow rate into the valve through port B.

Faults

To model a fault, in the Faults section, click the Add fault hyperlink next to the fault that you want to model. Use the fault parameters to specify the fault properties. For more information about fault modeling, see Introduction to Simscape Faults.

The Opening area when faulted parameter has three fault options:

  • Closed — The valve freezes at its smallest value:

    • When you set Set pressure control to Constant and Opening parameterization to Linear - Area vs. pressure, the valve area freezes at the Leakage area parameter.

    • When you set Set pressure control to Constant and Opening parameterization to Tabulated data - Area vs. pressure, the valve area freezes at the first element of the Opening area vector parameter.

    • When you set Set pressure control to Controlled the valve area freezes at the Leakage area parameter.

  • Open — The valve freezes at its largest value:

    • When you set Set pressure control to Constant and Opening parameterization to Linear - Area vs. pressure, the valve area freezes at the Maximum opening area parameter.

    • When you set Set pressure control to Constant and Orifice parameterization to Tabulated data - Area vs. pressure, the valve area freezes at the last element of the Opening area vector parameter.

    • When you set Set pressure control to Controlled the valve area freezes at the Maximum opening area parameter.

  • Maintain last value — The valve area freezes at the valve open area when the trigger occurred.

Due to numerical smoothing at the extremes of the valve area, the minimum area the block uses is larger than the Leakage area parameter, and the maximum is smaller than the Maximum orifice area parameter, in proportion to the Smoothing factor parameter value.

After the fault triggers, the valve remains at the faulted area for the rest of the simulation.

When you set Opening parameterization to Tabulated data - Volumetric flow rate vs. pressure, the fault options are defined by the volumetric flow rate through the valve:

  • Closed — The valve stops at the mass flow rate associated with the first elements of the Volumetric flow rate vector parameter and the Pressure drop vector parameter:

    m˙=KLeakρ¯Δp.

  • Open — The valve stops at the mass flow rate associated with the last elements of the Volumetric flow rate vector parameter and the Pressure drop vector parameter:

    m˙=KMaxρ¯Δp

  • Maintain at last value — The valve stops at the mass flow rate and pressure differential when the trigger occurs:

    m˙=KLastρ¯Δp,

where

KLast=|m˙|ρ¯|Δp|.

Predefined Parameterization

You can populate the block with pre-parameterized manufacturing data, which allows you to model a specific supplier component.

To load a predefined parameterization:

  1. In the block dialog box, next to Selected part, click the "<click to select>" hyperlink next to Selected part in the block dialogue box settings.

  2. The Block Parameterization Manager window opens. Select a part from the menu and click Apply all. You can narrow the choices using the Manufacturer drop down menu.

  3. You can close the Block Parameterization Manager menu. The block now has the parameterization that you specified.

  4. You can compare current parameter settings with a specific supplier component in the Block Parameterization Manager window by selecting a part and viewing the data in the Compare selected part with block section.

Note

Predefined block parameterizations use available data sources to supply parameter values. The block substitutes engineering judgement and simplifying assumptions for missing data. As a result, expect some deviation between simulated and actual physical behavior. To ensure accuracy, validate the simulated behavior against experimental data and refine your component models as necessary.

To learn more, see List of Pre-Parameterized Components.

Examples

Ports

Input

expand all

Set pressure for controlled valve operation, in Pa.

Dependencies

To enable this port, set Set pressure control to Controlled.

Conserving

expand all

Thermal liquid conserving port associated with valve inlet A.

Thermal liquid conserving port associated with valve inlet B.

Parameters

expand all

Parameters

Valve operation method. A Constant valve opens linearly over a fixed pressure regulation range or in accordance with tabulated pressure and opening area data that you provide. A Controlled valve opens according to a variable set pressure signal at port Ps over a fixed pressure regulation range.

Dependencies

To enable this parameter, set Set pressure control to Constant.

Method of modeling the valve opening or closing. You can parameterize the valve opening linearly or by using a table of values that correlate the area-to-pressure differential.

Dependencies

To enable this parameter, set Set pressure control to Constant.

Specification method for the valve control pressure. When you set this parameter to Pressure at port A, the block uses only the pressure at port A to determine when the flow exceeds the value of the Set pressure (gauge) parameter. When you set this parameter Pressure differential, the block uses the value of the Set pressure differential parameter to determine whether the pressure differential from port A to port B exceeds the range.

Dependencies

To enable this parameter, set Set pressure control to Constant and Opening parameterization to Linear - Area vs. pressure or Tabulated data - Area vs. pressure.

Pressure at which the opening mechanism triggers. The opening area remains variable throughout the pressure regulation range of the valve.

Dependencies

To enable this parameter, set Set pressure control to Constant and either:

  • Pressure control specification to Pressure at port A and Opening parameterization to Linear - Area vs. pressure.

  • Opening parameterization to Tabulated data - Volumetric flow rate vs. pressure.

Minimum pressure differential between ports A and B required to open the valve. A pressure differential above this value causes the valve to gradually open until it reaches the fully open state.

Dependencies

To enable this parameter, set Set pressure control to Constant, Pressure control specification to Pressure differential, and Opening parameterization to Linear - Area vs. pressure.

Valve operational range. The valve begins to open at the set pressure value, and is fully open at pmax, the end of the pressure regulation range, where pmax = pset + prange.

Dependencies

To enable this parameter, set either:

  • Set pressure control to Controlled.

  • Set pressure control to Constant and Opening parameterization to Linear - Area vs. pressure.

Opening area of the valve in the fully open position due to sealing imperfections, when the valve is at the upper limit of the pressure regulation range.

Dependencies

To enable this parameter, set either:

  • Set pressure control to Controlled.

  • Set pressure control to Constant and Opening parameterization to Linear - Area vs. pressure.

Sum of all gaps when the valve is in the fully shut position. The block saturates smaller numbers to this value. This parameter contributes to numerical stability by maintaining continuity in the flow.

Dependencies

To enable this parameter, set either:

  • Set pressure control to Controlled.

  • Set pressure control to Constant and Opening parameterization to Linear - Area vs. pressure.

Vector of pressure differential values for the tabular parameterization of the valve opening area. The vector elements must correspond one-to-one with the elements in the Opening area vector parameter. The elements must be listed in ascending order and must be greater than 0. The block employs linear interpolation between table data points.

The first element of this parameter is the pressure setting of the valve, at which the valve begins to open. The last element is the maximum pressure, at which the valve is fully open. The difference between the two is the pressure regulation range of the valve.

Dependencies

To enable this parameter, set Set pressure control to Constant and either:

  • Opening parameterization to Tabulated data - Volumetric flow rate vs. pressure.

  • Opening parameterization to Tabulated data - Area vs. pressure and Pressure control specification to Pressure differential.

Vector of pressure differential values for the tabular area parameterization of the valve opening area. The vector elements must correspond one-to-one with the elements in the Opening area vector parameter. The elements are must be in ascending order and must be greater than 0. The block employs linear interpolation between table data points.

The first element of this parameter is the pressure setting of the valve, at which the valve begins to open. The last element is the maximum pressure, at which the valve is fully open. The difference between the two is the pressure regulation range of the valve.

Dependencies

To enable this parameter, set Set pressure control to Constant, Opening parameterization to Tabulated data - Area vs. pressure, and Pressure control specification to Pressure at port A.

Vector of valve opening areas for the tabular area parameterization of the valve opening area. The vector elements must correspond one-to-one with the elements in the Pressure differential vector parameter. The elements must be in ascending order and must be greater than 0. The block employs linear interpolation between table data points.

Dependencies

To enable this parameter, set Set pressure control to Constant and Opening parameterization to Tabulated data - Area vs. pressure.

Vector of volumetric flow rate values for the tabular parameterization of the valve opening. This vector must have the same number of elements as the Pressure drop vector parameter. The vector elements must be in ascending order.

Dependencies

To enable this parameter, set Set pressure control to Constant and Opening parameterization to Tabulated data - Volumetric flow rate vs. pressure.

Area at ports A and B, which the block uses in the pressure-flow rate equation that determines the mass flow rate through the valve.

Correction factor that the block uses to account for discharge losses in theoretical flows.

Dependencies

To enable this parameter, set either:

  • Set pressure control to Controlled.

  • Set pressure control to Constant and Opening parameterization to Linear - Area vs. pressure or Tabulated data - Area vs. pressure.

Upper Reynolds number limit for laminar flow through the valve.

Dependencies

To enable this parameter, set either:

  • Set pressure control to Controlled.

  • Set pressure control to Constant and Opening parameterization to Linear - Area vs. pressure or Tabulated data - Area vs. pressure.

Continuous smoothing factor that introduces a layer of gradual change to the flow response when the valve is in near-open or near-closed positions. Set this value to a nonzero value less than one to increase the stability of your simulation in these regimes.

A smoothing factor of 0 corresponds to a linear function that is discontinuous at the set and maximum-area pressures. A smoothing factor of 1 corresponds to a nonlinear function that changes continuously throughout the entire function domain.

A smoothing factor between 0 and 1 corresponds to a continuous function with smooth nonlinear transitions at the set and maximum-area pressures.

Dependencies

To enable this parameter, set either:

  • Set pressure control to Controlled.

  • Set pressure control to Constant and Opening parameterization to Linear - Area vs. pressure.

Whether to account for pressure increase when fluid flows from a region of smaller cross-sectional area to a region of larger cross-sectional area. To capture the increase in pressure, select this parameter.

Dependencies

To enable this parameter, set either:

  • Set pressure control to Controlled.

  • Set pressure control to Constant and Opening parameterization to Linear - Area vs. pressure or Tabulated data - Area vs. pressure.

Whether to account for transient effects to the fluid system due to the valve opening. Selecting this parameter approximates the opening conditions by introducing a first-order lag in the flow response.

Time constant by which to compute the lag in the opening dynamics.

Dependencies

To enable this parameter, select Opening dynamics.

Faults

Option to model a valve area fault in the block. To add a fault, click the Add fault hyperlink. When a fault occurs, the valve area normally set by the opening parameterization is set based on the value specified in the Opening area when faulted parameter.

Faulted valve type. You can choose for the valve to seize when the valve is opened, closed, or at the area when the fault triggers.

Dependencies

To enable this parameter, click the Add fault hyperlink.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Version History

Introduced in R2016a

expand all