Main Content

使用 Parallel Computing Toolbox 最小化高成本优化问题

此示例说明如何使用 Optimization Toolbox™ 和 Global Optimization Toolbox 中的函数来加速高成本优化问题的最小化。在示例的第一部分,我们通过以串行方式计算函数来求解优化问题,在示例的第二部分,我们通过并行计算函数以使用并行 for 循环 (parfor) 功能来求解相同的问题。我们可以比较在两种情况下优化函数所花费的时间。

高成本优化问题

出于本示例的目的,我们用四个变量来求解问题,在这个过程中,我们通过暂停人为地增加目标函数和约束函数的成本。

function f = expensive_objfun(x)
%EXPENSIVE_OBJFUN An expensive objective function used in optimparfor example.

%   Copyright 2007-2013 The MathWorks, Inc.

% Simulate an expensive function by pausing
pause(0.1)
% Evaluate objective function
f = exp(x(1)) * (4*x(3)^2 + 2*x(4)^2 + 4*x(1)*x(2) + 2*x(2) + 1);

function [c,ceq] = expensive_confun(x)
%EXPENSIVE_CONFUN An expensive constraint function used in optimparfor example.

%   Copyright 2007-2013 The MathWorks, Inc.

% Simulate an expensive function by pausing
pause(0.1);
% Evaluate constraints
c = [1.5 + x(1)*x(2)*x(3) - x(1) - x(2) - x(4); 
     -x(1)*x(2) + x(4) - 10];
% No nonlinear equality constraints:
ceq = [];

使用 fmincon 进行最小化

我们想测量 fmincon 以串行方式运行所用的时间,以便我们可以将其与并行时间进行比较。

startPoint = [-1 1 1 -1];
options = optimoptions('fmincon','Display','iter','Algorithm','interior-point');
startTime = tic;
xsol = fmincon(@expensive_objfun,startPoint,[],[],[],[],[],[],@expensive_confun,options);
time_fmincon_sequential = toc(startTime);
fprintf('Serial FMINCON optimization takes %g seconds.\n',time_fmincon_sequential);
                                            First-order      Norm of
 Iter F-count            f(x)  Feasibility   optimality         step
    0       5    1.839397e+00    1.500e+00    3.211e+00
    1      11   -9.760099e-01    3.708e+00    7.902e-01    2.362e+00
    2      16   -1.480976e+00    0.000e+00    8.344e-01    1.069e+00
    3      21   -2.601599e+00    0.000e+00    8.390e-01    1.218e+00
    4      29   -2.823630e+00    0.000e+00    2.598e+00    1.118e+00
    5      34   -3.905338e+00    0.000e+00    1.210e+00    7.302e-01
    6      39   -6.212992e+00    3.934e-01    7.372e-01    2.405e+00
    7      44   -5.948761e+00    0.000e+00    1.784e+00    1.905e+00
    8      49   -6.940062e+00    1.233e-02    7.668e-01    7.553e-01
    9      54   -6.973887e+00    0.000e+00    2.549e-01    3.920e-01
   10      59   -7.142993e+00    0.000e+00    1.903e-01    4.735e-01
   11      64   -7.155325e+00    0.000e+00    1.365e-01    2.626e-01
   12      69   -7.179122e+00    0.000e+00    6.336e-02    9.115e-02
   13      74   -7.180116e+00    0.000e+00    1.069e-03    4.670e-02
   14      79   -7.180409e+00    0.000e+00    7.797e-04    2.815e-03
   15      84   -7.180410e+00    0.000e+00    6.368e-06    3.120e-04

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in 
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Serial FMINCON optimization takes 18.2876 seconds.

使用遗传算法进行最小化

由于 ga 通常比 fmincon 需要更多函数计算,我们将从此问题中删除高成本约束,改为执行无约束优化。为约束传递空矩阵 []。此外,我们将 ga 的最大代数限制为 15,以便 ga 可以在合理的时间内终止。我们想测量 ga 运行所用的时间,以便我们可以将其与并行 ga 计算进行比较。请注意,运行 ga 需要 Global Optimization Toolbox。

rng default % for reproducibility
try
    gaAvailable = false;
    nvar = 4;
    gaoptions = optimoptions('ga','MaxGenerations',15,'Display','iter');
    startTime = tic;
    gasol = ga(@expensive_objfun,nvar,[],[],[],[],[],[],[],gaoptions);
    time_ga_sequential = toc(startTime);
    fprintf('Serial GA optimization takes %g seconds.\n',time_ga_sequential);
    gaAvailable = true;
catch ME
    warning(message('optim:optimdemos:optimparfor:gaNotFound'));
end
Single objective optimization:
4 Variable(s)

Options:
CreationFcn:       @gacreationuniform
CrossoverFcn:      @crossoverscattered
SelectionFcn:      @selectionstochunif
MutationFcn:       @mutationgaussian

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              100      -5.546e+05       1.483e+15        0
    2              147      -5.581e+17      -1.116e+16        0
    3              194      -7.556e+17       6.679e+22        0
    4              241      -7.556e+17      -7.195e+16        1
    5              288      -9.381e+27      -1.876e+26        0
    6              335      -9.673e+27      -7.497e+26        0
    7              382      -4.511e+36      -9.403e+34        0
    8              429      -5.111e+36      -3.011e+35        0
    9              476      -7.671e+36       9.346e+37        0
   10              523       -1.52e+43      -3.113e+41        0
   11              570      -2.273e+45       -4.67e+43        0
   12              617      -2.589e+47      -6.281e+45        0
   13              664      -2.589e+47      -1.015e+46        1
   14              711      -8.149e+47      -5.855e+46        0
   15              758      -9.503e+47       -1.29e+47        0
Optimization terminated: maximum number of generations exceeded.
Serial GA optimization takes 81.5878 seconds.

设置 Parallel Computing Toolbox

如果 Parallel Computing Toolbox™ 可用并且有并行工作进程池,则 Optimization Toolbox 中用于逼近导数的函数的有限差分是使用 parfor 功能以并行方式完成的。同样,Global Optimization Toolbox 中的 gagamultiobjpatternsearch 求解器以并行方式计算函数。为了使用 parfor 函数,我们使用 parpool 函数来设置并行环境。发布此示例的计算机有四个核,因此 parpool 会启动四个 MATLAB® 工作进程。如果在运行此示例时已有并行池,我们就使用该池;有关详细信息,请参阅 parpool 的文档。

if max(size(gcp)) == 0 % parallel pool needed
    parpool % create the parallel pool
end

使用并行 fmincon 进行最小化

为了使用并行 fmincon 函数最小化高成本优化问题,我们需要显式指示我们的目标函数和约束函数可以以并行方式进行计算,并且我们希望 fmincon 尽可能使用其并行功能。目前,有限差分可以以并行方式完成。我们想测量 fmincon 运行所用的时间,以便我们可以将其与串行 fmincon 运行进行比较。

options = optimoptions(options,'UseParallel',true);
startTime = tic;
xsol = fmincon(@expensive_objfun,startPoint,[],[],[],[],[],[],@expensive_confun,options);
time_fmincon_parallel = toc(startTime);
fprintf('Parallel FMINCON optimization takes %g seconds.\n',time_fmincon_parallel);
                                            First-order      Norm of
 Iter F-count            f(x)  Feasibility   optimality         step
    0       5    1.839397e+00    1.500e+00    3.211e+00
    1      11   -9.760099e-01    3.708e+00    7.902e-01    2.362e+00
    2      16   -1.480976e+00    0.000e+00    8.344e-01    1.069e+00
    3      21   -2.601599e+00    0.000e+00    8.390e-01    1.218e+00
    4      29   -2.823630e+00    0.000e+00    2.598e+00    1.118e+00
    5      34   -3.905338e+00    0.000e+00    1.210e+00    7.302e-01
    6      39   -6.212992e+00    3.934e-01    7.372e-01    2.405e+00
    7      44   -5.948761e+00    0.000e+00    1.784e+00    1.905e+00
    8      49   -6.940062e+00    1.233e-02    7.668e-01    7.553e-01
    9      54   -6.973887e+00    0.000e+00    2.549e-01    3.920e-01
   10      59   -7.142993e+00    0.000e+00    1.903e-01    4.735e-01
   11      64   -7.155325e+00    0.000e+00    1.365e-01    2.626e-01
   12      69   -7.179122e+00    0.000e+00    6.336e-02    9.115e-02
   13      74   -7.180116e+00    0.000e+00    1.069e-03    4.670e-02
   14      79   -7.180409e+00    0.000e+00    7.797e-04    2.815e-03
   15      84   -7.180410e+00    0.000e+00    6.368e-06    3.120e-04

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in 
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Parallel FMINCON optimization takes 8.79291 seconds.

使用并行遗传算法进行最小化

为了使用 ga 函数最小化高成本优化问题,我们需要显式指示我们的目标函数可以并行计算,并且我们希望 ga 尽可能使用其并行功能。要使用并行 ga,我们还需要将“Vectorized”选项设置为默认值(即“off”)。我们仍想测量 ga 所用的时间,以便我们可以将其与串行 ga 运行进行比较。尽管由于 ga 使用随机数生成器,这次运行可能与串行运行不同,但两次运行中高成本的函数计算次数是相同的。请注意,运行 ga 需要 Global Optimization Toolbox。

rng default % to get the same evaluations as the previous run
if gaAvailable
    gaoptions = optimoptions(gaoptions,'UseParallel',true);
    startTime = tic;
    gasol = ga(@expensive_objfun,nvar,[],[],[],[],[],[],[],gaoptions);
    time_ga_parallel = toc(startTime);
    fprintf('Parallel GA optimization takes %g seconds.\n',time_ga_parallel);
end
Single objective optimization:
4 Variable(s)

Options:
CreationFcn:       @gacreationuniform
CrossoverFcn:      @crossoverscattered
SelectionFcn:      @selectionstochunif
MutationFcn:       @mutationgaussian

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              100      -5.546e+05       1.483e+15        0
    2              147      -5.581e+17      -1.116e+16        0
    3              194      -7.556e+17       6.679e+22        0
    4              241      -7.556e+17      -7.195e+16        1
    5              288      -9.381e+27      -1.876e+26        0
    6              335      -9.673e+27      -7.497e+26        0
    7              382      -4.511e+36      -9.403e+34        0
    8              429      -5.111e+36      -3.011e+35        0
    9              476      -7.671e+36       9.346e+37        0
   10              523       -1.52e+43      -3.113e+41        0
   11              570      -2.273e+45       -4.67e+43        0
   12              617      -2.589e+47      -6.281e+45        0
   13              664      -2.589e+47      -1.015e+46        1
   14              711      -8.149e+47      -5.855e+46        0
   15              758      -9.503e+47       -1.29e+47        0
Optimization terminated: maximum number of generations exceeded.
Parallel GA optimization takes 15.2253 seconds.

比较串行和并行时间

X = [time_fmincon_sequential time_fmincon_parallel];
Y = [time_ga_sequential time_ga_parallel];
t = [0 1];
plot(t,X,'r--',t,Y,'k-')
ylabel('Time in seconds')
legend('fmincon','ga')
ax = gca;
ax.XTick = [0 1];
ax.XTickLabel = {'Serial' 'Parallel'};
axis([0 1 0 ceil(max([X Y]))])
title('Serial Vs. Parallel Times')

通过 parfor 利用并行函数计算提高了 fminconga 的效率。对于高成本的目标函数和约束函数,这种改进通常更明显。

相关主题