通过整数规划求解数独谜题:基于求解器
此示例说明如何使用二元整数规划来求解数独谜题。有关基于问题的方法,请参阅通过整数规划求解数独谜题:基于问题。
您可能看到过数独谜题。谜题是用 1 到 9 的整数填充 9×9 网格,要求这九个数字中的每个数字在每一行、每一列和每个九宫格(3×3 粗线正方形)中都只出现一次,不能重复。网格已根据提示进行了部分填充,您的任务是填充网格的其余部分。
初始谜题
这是一个带有提示的数据矩阵 B
。第一行 B(1,2,2)
表示第 1 行第 2 列的整数提示为 2。第二行 B(1,5,3)
表示第 1 行第 5 列的整数提示为 3。以下是整个矩阵 B
。
B = [1,2,2;
1,5,3;
1,8,4;
2,1,6;
2,9,3;
3,3,4;
3,7,5;
4,4,8;
4,6,6;
5,1,8;
5,5,1;
5,9,6;
6,4,7;
6,6,5;
7,3,7;
7,7,6;
8,1,4;
8,9,8;
9,2,3;
9,5,4;
9,8,2];
drawSudoku(B) % For the listing of this program, see the end of this example.
2009 年发布的 Cleve's Corner 中介绍了此谜题以及一种备选的 MATLAB® 求解方法。
求解数独谜题有许多手动方法,也有许多编程方法。此示例说明一种使用二元整数规划的简单方法。
这种方法特别简单,因为您无需给出求解算法。只需将数独的规则以及每条提示表示为对解的约束,然后 intlinprog
就会生成解。
二元整数规划方法
关键思路是将谜题从 9×9 正方形网格转换为一个由二元值(0 或 1)组成的 9×9×9 立方数组。将这个立方数组想象成由 9 个正方形网络上下堆叠在一起。顶部网格是数组的第一个正方形层,只要解或提示包含整数 1,则该层对应位置就为 1。只要解或提示包含整数 2,第二层对应位置就为 1。只要解或提示包含整数 9,第九层对应位置就为 1。
这种表示非常适合二元整数规划。
此处不需要目标函数,目标函数也可能是 0。问题实际上只是求可行解,也就是满足所有约束的解。但是,为在整数规划求解器内部打破平衡,同时保证求解速度,这里使用一个非常数目标函数。
将数独规则表示为约束
假设解 用一个 9×9×9 的二元数组表示。那 应具备哪些特性呢?首先,由于二维网格 (i,j) 的每个方格中都有且仅有一个值,因此三维数组项 中有且仅有一个非零元素。换句话说,对于每个 和 ,都满足
类似地,在二维网格的每一行 中,1 到 9 中的每个数字都只能出现一次。换句话说,对于每个 和 ,都满足
二维网格中的每一列 j 也具有同样的特性:对于每个 j 和 ,都满足
3×3 粗线网格具有类似的约束。对于 且 的网格元素,对于每层 都满足:
要表示全部九个粗线网格,只需将每个 和 索引加上 3 或 6:
其中
将提示表示为约束
每个初始值(提示)都可以表示为一个约束。假设在 时, 格点处的提示为 。则 。约束 能确保在 时,所有其他 。
编写数独的规则
尽管数独规则可以很方便地用 9×9×9 解数组 x
表示,但线性约束是用向量解矩阵 x(:)
给出的。因此,当您编写数独程序时,必须使用从 9×9×9 初始数组派生的约束矩阵。
以下是一种建立数独规则的方法,也包括作为约束的提示。您的软件随附 sudokuEngine
文件。
type sudokuEngine
function [S,eflag] = sudokuEngine(B) % This function sets up the rules for Sudoku. It reads in the puzzle % expressed in matrix B, calls intlinprog to solve the puzzle, and returns % the solution in matrix S. % % The matrix B should have 3 columns and at least 17 rows (because a Sudoku % puzzle needs at least 17 entries to be uniquely solvable). The first two % elements in each row are the i,j coordinates of a clue, and the third % element is the value of the clue, an integer from 1 to 9. If B is a % 9-by-9 matrix, the function first converts it to 3-column form. % Copyright 2014 The MathWorks, Inc. if isequal(size(B),[9,9]) % 9-by-9 clues % Convert to 81-by-3 [SM,SN] = meshgrid(1:9); % make i,j entries B = [SN(:),SM(:),B(:)]; % i,j,k rows % Now delete zero rows [rrem,~] = find(B(:,3) == 0); B(rrem,:) = []; end if size(B,2) ~= 3 || length(size(B)) > 2 error('The input matrix must be N-by-3 or 9-by-9') end if sum([any(B ~= round(B)),any(B < 1),any(B > 9)]) % enforces entries 1-9 error('Entries must be integers from 1 to 9') end %% The rules of Sudoku: N = 9^3; % number of independent variables in x, a 9-by-9-by-9 array M = 4*9^2; % number of constraints, see the construction of Aeq Aeq = zeros(M,N); % allocate equality constraint matrix Aeq*x = beq beq = ones(M,1); % allocate constant vector beq f = (1:N)'; % the objective can be anything, but having nonconstant f can speed the solver lb = zeros(9,9,9); % an initial zero array ub = lb+1; % upper bound array to give binary variables counter = 1; for j = 1:9 % one in each row for k = 1:9 Astuff = lb; % clear Astuff Astuff(1:end,j,k) = 1; % one row in Aeq*x = beq Aeq(counter,:) = Astuff(:)'; % put Astuff in a row of Aeq counter = counter + 1; end end for i = 1:9 % one in each column for k = 1:9 Astuff = lb; Astuff(i,1:end,k) = 1; Aeq(counter,:) = Astuff(:)'; counter = counter + 1; end end for U = 0:3:6 % one in each square for V = 0:3:6 for k = 1:9 Astuff = lb; Astuff(U+(1:3),V+(1:3),k) = 1; Aeq(counter,:) = Astuff(:)'; counter = counter + 1; end end end for i = 1:9 % one in each depth for j = 1:9 Astuff = lb; Astuff(i,j,1:end) = 1; Aeq(counter,:) = Astuff(:)'; counter = counter + 1; end end %% Put the particular puzzle in the constraints % Include the initial clues in the |lb| array by setting corresponding % entries to 1. This forces the solution to have |x(i,j,k) = 1|. for i = 1:size(B,1) lb(B(i,1),B(i,2),B(i,3)) = 1; end %% Solve the Puzzle % The Sudoku problem is complete: the rules are represented in the |Aeq| % and |beq| matrices, and the clues are ones in the |lb| array. Solve the % problem by calling |intlinprog|. Ensure that the integer program has all % binary variables by setting the intcon argument to |1:N|, with lower and % upper bounds of 0 and 1. intcon = 1:N; [x,~,eflag] = intlinprog(f,intcon,[],[],Aeq,beq,lb,ub); %% Convert the Solution to a Usable Form % To go from the solution x to a Sudoku grid, simply add up the numbers at % each $(i,j)$ entry, multiplied by the depth at which the numbers appear: if eflag > 0 % good solution x = reshape(x,9,9,9); % change back to a 9-by-9-by-9 array x = round(x); % clean up non-integer solutions y = ones(size(x)); for k = 2:9 y(:,:,k) = k; % multiplier for each depth k end S = x.*y; % multiply each entry by its depth S = sum(S,3); % S is 9-by-9 and holds the solved puzzle else S = []; end
调用数独求解器
S = sudokuEngine(B); % Solves the puzzle pictured at the start
LP: Optimal objective value is 29565.000000. Optimal solution found. Intlinprog stopped at the root node because the objective value is within a gap tolerance of the optimal value, options.AbsoluteGapTolerance = 0. The intcon variables are integer within tolerance, options.IntegerTolerance = 1e-05.
drawSudoku(S)
您可以轻松检查解是否正确。
用于绘制数独谜题的函数
type drawSudoku
function drawSudoku(B) % Function for drawing the Sudoku board % Copyright 2014 The MathWorks, Inc. figure;hold on;axis off;axis equal % prepare to draw rectangle('Position',[0 0 9 9],'LineWidth',3,'Clipping','off') % outside border rectangle('Position',[3,0,3,9],'LineWidth',2) % heavy vertical lines rectangle('Position',[0,3,9,3],'LineWidth',2) % heavy horizontal lines rectangle('Position',[0,1,9,1],'LineWidth',1) % minor horizontal lines rectangle('Position',[0,4,9,1],'LineWidth',1) rectangle('Position',[0,7,9,1],'LineWidth',1) rectangle('Position',[1,0,1,9],'LineWidth',1) % minor vertical lines rectangle('Position',[4,0,1,9],'LineWidth',1) rectangle('Position',[7,0,1,9],'LineWidth',1) % Fill in the clues % % The rows of B are of the form (i,j,k) where i is the row counting from % the top, j is the column, and k is the clue. To place the entries in the % boxes, j is the horizontal distance, 10-i is the vertical distance, and % we subtract 0.5 to center the clue in the box. % % If B is a 9-by-9 matrix, convert it to 3 columns first if size(B,2) == 9 % 9 columns [SM,SN] = meshgrid(1:9); % make i,j entries B = [SN(:),SM(:),B(:)]; % i,j,k rows end for ii = 1:size(B,1) text(B(ii,2)-0.5,9.5-B(ii,1),num2str(B(ii,3))) end hold off end