Main Content

Thermal Deflection of Bimetallic Beam

This example shows how to solve a coupled thermo-elasticity problem. Thermal expansion or contraction in mechanical components and structures occurs due to temperature changes in the operating environment. Thermal stress is a secondary manifestation: the structure experiences stresses when structural constraints prevent free thermal expansion or contraction of the component. Deflection of a bimetallic beam is a common physics experiment. A typical bimetallic beam consists of two materials bonded together. The coefficients of thermal expansion (CTE) of these materials are significantly different.

Bimetallic beam geometry with invar as the top layer and copper as the bottom layer

This example finds the deflection of a bimetallic beam and compares this deflection to the analytic solution based on beam theory approximation.

Create a beam geometry with these dimensions.

L = 0.1; % m
W = 5e-3; % m
H = 1e-3; % m
gm = multicuboid(L,W,[H,H],Zoffset=[0,H]);

Plot the geometry.

figure
pdegplot(gm)

Figure contains an axes object. The axes object contains 6 objects of type quiver, text, patch, line.

Identify the cell labels of the cells for which you want to specify material properties.

figure
pdegplot(gm,CellLabels="on")
axis([-L/2 -L/3 -W/2 W/2 0 2*H])
view([0 0])
zticks([])

Figure contains an axes object. The axes object contains 6 objects of type quiver, text, patch, line.

Create an femodel object for static structural analysis and include the geometry.

model = femodel(AnalysisType="structuralStatic", ...
                Geometry=gm);

Specify Young's modulus, Poisson's ratio, and the linear coefficient of thermal expansion to model linear elastic material behavior. To maintain unit consistency, specify all physical properties in SI units. First, assign the material properties of copper to the bottom cell.

Ec = 137e9; % N/m^2
nuc = 0.28;
CTEc = 20.00e-6; % m/m-C
model.MaterialProperties(1) = ...
    materialProperties(YoungsModulus=Ec, ...
                       PoissonsRatio=nuc, ...
                       CTE=CTEc);

Assign the material properties of invar to the top cell.

Ei = 130e9; % N/m^2
nui = 0.354;
CTEi = 1.2e-6; % m/m-C
model.MaterialProperties(2) = ...
    materialProperties(YoungsModulus=Ei, ...
                       PoissonsRatio=nui, ...
                       CTE=CTEi);

For this example, assume that the left end of the beam is fixed. To impose this boundary condition, display the face labels on the left end of the beam.

figure
pdegplot(gm,FaceLabels="on", ...
            FaceAlpha=0.25)
axis([-L/2 -L/3 -W/2 W/2 0 2*H])
view([40 15])
xticks([])
yticks([])
zticks([])

Figure contains an axes object. The axes object contains 6 objects of type quiver, text, patch, line.

Apply a fixed boundary condition on faces 5 and 10.

model.FaceBC([5,10]) = faceBC(Constraint="fixed");

Apply the temperature change as a thermal load. Use a reference temperature of 25 degrees Celsius and an operating temperature of 125 degrees Celsius. Thus, the temperature change for this model is 100 degrees Celsius.

model.CellLoad = cellLoad(Temperature=125);
model.ReferenceTemperature = 25;

Generate a mesh and solve the model.

model = generateMesh(model,Hmax=H/2);
R = solve(model);

Plot the deflected shape of the bimetallic beam with the magnitude of displacement as the colormap data.

figure
pdeplot3D(R.Mesh,ColorMapData=R.Displacement.Magnitude, ...
                 Deformation=R.Displacement, ...
                 DeformationScaleFactor=2)
title("Deflection of Invar-Copper Beam")

Figure contains an axes object. The hidden axes object with title Deflection of Invar-Copper Beam contains 5 objects of type patch, quiver, text.

You also can plot the deflected shape of the bimetallic beam with the magnitude of displacement as the colormap data by using the Visualize PDE Results Live Editor task. First, create a new live script by clicking the New Live Script button in the File section on the Home tab.

New Live Script button

On the Live Editor tab, select Task > Visualize PDE Results. This action inserts the task into your script.

Visualize PDE Results task on the Live Editor tab

To plot the magnitude of displacement, follow these steps.

  1. In the Select results section of the task, select R from the drop-down list.

  2. In the Specify data parameters section of the task, set Type to Displacement and Component to Magnitude.

Live Task

Figure contains an object of type pde.graphics.pdevisualization.

Compute the deflection analytically, based on beam theory. The deflection of the beam is δ=6ΔT(αc-αi)L2K1, where K1=14+EcEi+EiEc, ΔT is the temperature difference, αc and αi are the coefficients of thermal expansion of copper and invar, Ec and Ei are Young's modulus of copper and invar, and L is the length of the beam.

K1 = 14 + (Ec/Ei)+ (Ei/Ec);
deflectionAnalytical = 3*(CTEc - CTEi)*100*2*H*L^2/(H^2*K1);

Compare the analytical results and the results obtained in this example. The results are comparable because of the large aspect ratio.

PDEToobox_Deflection = max(R.Displacement.uz);
percentError = 100*(PDEToobox_Deflection - ...
                    deflectionAnalytical)/PDEToobox_Deflection;

bimetallicResults = table(PDEToobox_Deflection, ...
                          deflectionAnalytical,percentError);
bimetallicResults.Properties.VariableNames = {'PDEToolbox', ...
                                              'Analytical', ...
                                              'PercentageError'};
disp(bimetallicResults)
    PDEToolbox    Analytical    PercentageError
    __________    __________    _______________

    0.0071063     0.0070488         0.80953