Main Content

LOS Channel

Narrowband line-of-sight propagation channel

  • loschannelblock

Libraries:
Phased Array System Toolbox / Environment and Target

Description

The LOS Channel block propagates signals from a point in space to another point in space by line-of-sight (LOS) channels. The block can also propagate signals from one point to multiple points or from multiple points back to one point. The block models propagation time, free-space propagation loss, Doppler shift, and atmospheric as well as weather loss. The block assumes that the propagation speed is much greater than the object speed in which case the stop-and-hop model is valid.

When propagating a signal in an LOS channel to an object and back, you can use a single block to compute two-way LOS channel propagation delays or two blocks to perform two one-way propagation delays in each direction. Because the LOS channel propagation delay is not necessarily an integer multiple of the sampling interval, it can turn out that the total round trip delay in samples when you use a two-way propagation block differs from the delay in samples when you use two one-way propagation blocks. For this reason, it is recommended that, when possible, you use a single two-way propagation block.

Ports

Input

expand all

Narrowband signal, specified as an M-element complex-valued column vector or M-by-N complex-valued matrix. The quantity M is the number of sample values of the signal and N is the number of signals to propagate. When you specify N signals, you need to specify N signal origins or N signal destinations.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A size change can occur, for example, in the case of a pulse waveform with variable pulse repetition frequency.

Signal origin, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued matrix. The quantity N is the number of propagated signals and equals the dimension specified in the signal input port X. If Pos1 is a column vector, it takes the form [x; y; z]. If Pos1 is a matrix, each column specifies a different signal origin and has the form [x; y; z]. Pos1 and Pos2 cannot both be specified as matrices — at least one must be a 3-by-1 column vector. Position units are meters.

Data Types: double

Signal destination, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued matrix. The quantity N is the number of propagated signals and equals the dimension specified in the signal in the input port X. If Pos2 is a column vector, it takes the form [x; y; z]. If Pos2 is a matrix, each column specifies a different signal origin and has the form [x; y; z]. Pos2 and Pos1 cannot both be specified as matrices — at least one must be a 3-by-1 column vector. Position units are meters.

Data Types: double

Signal origin velocity, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued matrix. The quantity N is the number of propagated signals and equals the dimension specified in the signal into the port X. If Vel1 is a column vector, it takes the form [Vx; Vy; zV]. If Vel1 is a matrix, each column specifies a different signal origin and has the form [Vx; Vy; Vz]. The dimensions of Vel1 must agree with the dimensions of Pos1. Vel1 and Vel2 cannot both be specified as matrices — at least one must be a 3-by-1 column vector. Position units are meters.

Data Types: double

Signal destination velocity, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued matrix. The quantity N is the number of propagated signals and equals the dimension specified in the signal into the port X. If Vel2 is a column vector, it takes the form [Vx; Vy; zV]. If Vel2 is a matrix, each column specifies a different signal origin and has the form [Vx; Vy; Vz]. The dimensions of Vel2 must agree with the dimensions of Pos2. Vel2 and Vel1 cannot both be specified as matrices — at least one must be a 3-by-1 column vector. Position units are meters.

Data Types: double

Output

expand all

Propagated signal, returned as a M-element complex-valued column vector, M-by-N complex-valued matrix. Y will have the same dimensions as X.

The output Y contains signal samples arriving at the signal destination within the current time frame. The current time frame is defined as the time spanned by the current input. Whenever it takes longer than the current time frame for the signal to propagate from the origin to the destination, the output contains no contribution from the input of the current time frame.

Parameters

expand all

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of light is the value returned by physconst('LightSpeed').

Data Types: double

Signal carrier frequency, specified as a positive scalar. Units are in Hz.

Data Types: double

Select this parameter to enable to add signal attenuation caused by atmospheric gases, rain, fog, or clouds. When you select this parameter, the Temperature (degrees Celsius), Dry air pressure (Pa), Water vapour density (g/m^3), Liquid water density (g/m^3), and Rain rate (mm/hr) parameters appear in the dialog box.

Data Types: Boolean

Ambient temperature, specified as a real-valued scalar. Units are in degrees Celsius.

Dependencies

To enable this parameter, select the Specify atmospheric parameters checkbox.

Data Types: double

Atmospheric dry air pressure, specified as a positive real-valued scalar. Units are in pascals (Pa). The default value of this parameter corresponds to one standard atmosphere.

Dependencies

To enable this parameter, select the Specify atmospheric parameters checkbox.

Data Types: double

Atmospheric water vapor density, specified as a positive real-valued scalar. Units are in g/m3.

Dependencies

To enable this parameter, select the Specify atmospheric parameters checkbox.

Data Types: datetime

Liquid water density of fog or clouds, specified as a nonnegative real-valued scalar. Units are in g/m3. Typical values for liquid water density are 0.05 for medium fog and 0.5 for thick fog.

Dependencies

To enable this parameter, select the Specify atmospheric parameters checkbox.

Data Types: double

Rainfall rate, specified as a nonnegative real-valued scalar. Units are in mm/hr.

Dependencies

To enable this parameter, select the Specify atmospheric parameters checkbox.

Data Types: double

Select this check box to perform round-trip propagation between the origin and destination. Otherwise the block performs one-way propagation from the origin to the destination.

Select this parameter to inherit the sample rate from upstream blocks. Otherwise, specify the sample rate using the Sample rate (Hz) parameter.

Data Types: Boolean

Specify the signal sampling rate as a positive scalar. Units are in Hz.

Dependencies

To enable this parameter, clear the Inherit sample rate check box.

Data Types: double

Specify the maximum distance between the signal origin and the destination as a positive scalar. Units are in meters. Amplitudes of any signals that propagate beyond this distance will be set to zero.

Block simulation, specified as Interpreted Execution or Code Generation. If you want your block to use the MATLAB® interpreter, choose Interpreted Execution. If you want your block to run as compiled code, choose Code Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the underlying System object™ in MATLAB. You can change and execute your model quickly. When you are satisfied with your results, you can then run the block using Code Generation. Long simulations run faster with generated code than in interpreted execution. You can run repeated executions without recompiling, but if you change any block parameters, then the block automatically recompiles before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink® model is in Accelerator mode, the block mode specified using Simulate using overrides the simulation mode.

Acceleration Modes

Block SimulationSimulation Behavior
NormalAcceleratorRapid Accelerator
Interpreted ExecutionThe block executes using the MATLAB interpreter.The block executes using the MATLAB interpreter.Creates a standalone executable from the model.
Code GenerationThe block is compiled.All blocks in the model are compiled.

For more information, see Choosing a Simulation Mode (Simulink).

Programmatic Use

Block Parameter:SimulateUsing
Type:enum
Values:Interpreted Execution, Code Generation
Default:Interpreted Execution

More About

expand all

Version History

Introduced in R2016a