Run Rapid Simulations over a Range of Parameter Values
This example shows how to use the RSim system target file to run simulations over a range of parameter values. The example uses the Van der Pol oscillator and performs a parameter sweep over a range of initial state values to obtain the phase diagram of a nonlinear system.
You can customize this example for your own application by modifying the MATLAB® script used to build this example. Click the link in the top left corner of this page to edit the MATLAB script. Click the link in the top right corner to run this example from MATLAB. Run the example from writable location. The example creates files that you may want to investigate later.
For this example, set model configuration parameter Default parameter behavior to Inlined
. In the example, you create Simulink.Parameter
objects as tunable parameters. To use RSim with Default parameter behavior set to Tunable
, and without explicitly declaring tunable parameters, see Run Batch Simulations Without Recompiling Generated Code.
To run multiple simulations in the Simulink® environment, consider using rapid accelerator instead of RSim. For information about rapid accelerator, see What Is Acceleration?. To sweep parameter values, see Optimize, Estimate, and Sweep Block Parameter Values.
Preparation Model
Make sure the current folder is writable. The example creates files.
[stat, fa] = fileattrib(pwd); if ~fa.UserWrite disp('This script must be run in a writable directory'); return end
Open the model. Then, open the Simulink Coder app. Set model configuration parameter System target file to rsim.tlc
.
For more information on doing this graphically and setting up other RSim target related options, see Configure a System Target File.
mdlName = 'rtwdemo_rsim_vdp'; open_system(mdlName); cs = getActiveConfigSet(mdlName); cs.switchTarget('rsim.tlc',[]);
Specify variables INIT_X1
(the initial condition for state x1), INIT_X2
(the initial condition for state x2
), and MU
(the gain value) as tunable. To create tunable parameters, convert the variables to Simulink.Parameter
objects, and configure the objects to use a storage class other than Auto
. In this example you investigate how the state trajectories evolve from different initial values for states x1
and x2
in the model.
INIT_X1 = Simulink.Parameter(INIT_X1); INIT_X1.StorageClass = 'Model default'; INIT_X2 = Simulink.Parameter(INIT_X2); INIT_X2.StorageClass = 'Model default'; MU = Simulink.Parameter(MU); MU.StorageClass = 'Model default';
Define the names of files that will be created.
prmFileName = [mdlName, '_prm_sets.mat']; logFileName = [mdlName, '_run_scr.log']; batFileName = [mdlName, '_run_scr']; exeFileName = mdlName; if ispc exeFileName = [exeFileName, '.exe']; batFileName = [batFileName, '.bat']; end aggDataFile = [mdlName, '_results']; startTime = cputime;
Build Model
Build the RSim executable program for the model. During the build process, a structural checksum is calculated for the model and embedded into the generated executable program. This checksum is used to check that a parameter set passed to the executable program is compatible with the program.
slbuild(mdlName);
### Starting build procedure for: rtwdemo_rsim_vdp ### Successful completion of build procedure for: rtwdemo_rsim_vdp Build Summary Top model targets built: Model Action Rebuild Reason ================================================================================================= rtwdemo_rsim_vdp Code generated and compiled Code generation information file does not exist. 1 of 1 models built (0 models already up to date) Build duration: 0h 0m 37.492s
Get Default Parameter Set for Model
Get the default rtP
structure (parameter set) for the model. The modelChecksum
field in the rtP
structure is the structural checksum of the model. This must match the checksum embedded in the RSim executable program. If the two checksums do not match, the executable program produces an error. rsimgetrtp
generates an rtP
structure with entries for the named tunable variables INIT_X1
, INIT_X2
, and MU
.
rtp = rsimgetrtp(mdlName)
rtp = struct with fields: modelChecksum: [410569968 1.5914e+09 3.4411e+09 … ] parameters: [1×1 struct] globalParameterInfo: [1×1 struct] collapsedBaseWorkspaceVariables: [] nonTunableVariables: [1×0 struct]
Create Parameter Sets
Using the rtp
structure, build a structure array with different values for the tunable variables in the model. As mentioned earlier, in this example you want see how the state trajectories evolve for different initial values for states x1
and x2
in the model. To do this, generate different parameter sets with different values for INIT_X1
and INIT_X2
and leave tunable variable MU
set to the default value.
INIT_X1_vals = -5:1:5; INIT_X2_vals = -5:1:5; MU_vals = 1; nPrmSets = length(INIT_X1_vals)*length(INIT_X2_vals)*length(MU_vals)
nPrmSets = 121
This example has nPrmSets
parameter sets. You need to run that many simulations. Initialize aggData
, which is a structure array that holds the parameter set and corresponding results.
aggData = struct('tout', [], 'yout', [], ... 'prms', struct('INIT_X1',[],'INIT_X2',[], 'MU', [])) aggData = repmat(aggData, nPrmSets, 1);
aggData = struct with fields: tout: [] yout: [] prms: [1×1 struct]
The utility function rsimsetrtpparam
builds the rtP
structure by adding parameter sets one at a time with different parameters values.
idx = 1; for iX1 = INIT_X1_vals for iX2 = INIT_X2_vals for iMU = MU_vals rtp = rsimsetrtpparam(rtp,idx,'INIT_X1',iX1,'INIT_X2',iX2,'MU',iMU); aggData(idx).prms.INIT_X1 = iX1; aggData(idx).prms.INIT_X2 = iX2; aggData(idx).prms.MU = iMU; idx = idx + 1; end end end
Save the rtP
structure array with the parameter sets to a MAT-file.
save(prmFileName,'rtp');
Create Batch File
Create a batch script file to run the RSim executable program over the parameter sets. Each run reads the specified parameter set from the parameter MAT-file and writes the results to the specified output MAT-file. Use the time out option so that if a run hangs (for example, because the model has a singularity for that parameter set), abort the run after the specified time limit and proceed to the next run.
For example, this command (on Windows®) specifies using the third parameter set from the rtP
structure in prm.mat
, writes the results to run3.mat
, and aborts execution if a run takes longer than 3600 seconds of CPU time. While running, the script pipes messages from model.exe
to run.log
, which you can use to debug issues.
model.exe -p prm.mat@3 -o run3.mat -L 3600 2>&1>> run.log
fid = fopen(batFileName, 'w'); idx = 1; for iX1 = INIT_X1_vals for iX2 = INIT_X2_vals for iMU = MU_vals outMatFile = [mdlName, '_run',num2str(idx),'.mat']; cmd = [exeFileName, ... ' -p ', prmFileName, '@', int2str(idx), ... ' -o ', outMatFile, ... ' -L 3600']; if ispc cmd = [cmd, ' 2>&1>> ', logFileName]; else % (unix) cmd = ['.' filesep cmd, ' 1> ', logFileName, ' 2>&1']; end fprintf(fid, ['echo "', cmd, '"\n']); fprintf(fid, [cmd, '\n']); idx = idx + 1; end end end if isunix, system(['touch ', logFileName]); system(['chmod +x ', batFileName]); end fclose(fid);
Creating a batch/script file to run simulations enables you to call the system command once to run the simulations (or even run the batch script outside MATLAB) instead of calling the system command in a loop for each simulation. This improves performance because the system command has significant overhead.
Execute Batch File to Run Simulations
Run the batch/script file, which runs the RSim executable program once for each parameter set and saves the results to a different MAT-file each time. You can run the batch file from outside MATLAB.
[stat, res] = system(['.' filesep batFileName]); if stat ~= 0 error(['Error running batch file ''', batFileName, ''' :', res]); end
This example logs simulation run results in one batch file as it runs the batch file to sequentially run n
simulations over n
parameter sets. You can modify the script to generate multiple batch files and run them in parallel by distributing them across multiple computers. Also, you can run the batch files without launching MATLAB.
Load Output MAT-Files and Collate Results
Collect the simulation results from the output MAT-files into the structure aggData
. If the output MAT-file corresponding to a particular run is not found, set the results corresponding to that run to NaN
(not a number). This situation occurs if a simulation run with a particular set of parameters encounters singularities in the model.
idx = 1; for iX1 = INIT_X1_vals for iX2 = INIT_X2_vals for iMU = MU_vals outMatFile = [mdlName, '_run',num2str(idx),'.mat']; if exist(outMatFile,'file') load(outMatFile); aggData(idx).tout = rt_tout; aggData(idx).yout = rt_yout; else aggData(idx).tout = nan; aggData(idx).yout = nan; end idx = idx + 1; end end end
Save the aggData
structure to the results MAT-file. At this point, you can delete the other MAT-files, as the aggData
data structure contains the aggregation of input (parameters sets) and output data (simulation results).
save(aggDataFile,'aggData'); disp(['Took ', num2str(cputime-startTime), ... ' seconds to generate results from ', ... num2str(nPrmSets), ' simulation runs (Steps 2 to 7).']);
Took 29.0781 seconds to generate results from 121 simulation runs (Steps 2 to 7).
Analyze Simulation Results
Plot the phase diagram (X2
versus X1
) with different initial values for X1
and X2
. The diagram shows that, irrespective of the initial condition, the Van der Pol oscillator converges to its natural oscillator mode.
colors = {'b','g','r','c','m','y','k'}; nColors = length(colors); for idx = 1:nPrmSets col = colors{idx - nColors*floor(idx/nColors) + 1}; plot(aggData(idx).prms.INIT_X1, aggData(idx).prms.INIT_X2, [col,'x'], ... aggData(idx).yout(:,1), aggData(idx).yout(:,2),col); hold on end grid on xlabel('X1'); ylabel('X2'); axis('square'); title('Phase diagram for Van der Pol equation');