使用调度编辑器 API 为模型创建和分析随机调度
此示例使用调度编辑器 API 对调度执行操作。然后,它使用函数来生成随机调度,并在仿真数据检查器中对这些调度进行分析
打开模型并获取调度对象
打开节气门位置控制系统的模型,使用 get_param 获得 simulink.schedule.OrderedSchedule 对象。此对象包含当前调度。
model = 'ScheduleEditorAPIWithSubsystemPartitions'; open_system(model); schedule = get_param(model,'Schedule')
schedule =
OrderedSchedule with properties:
Order: [7×3 table]
RateSections: [3×1 simulink.schedule.RateSection]
Events: [0×1 simulink.schedule.Event]
Description: ''

检查调度对象
调度对象具有 Order 属性,该属性包含模型中各分区的执行顺序。Order 属性显示一个包含分区名称、其索引、类型及其触发器的表。
schedule.Order
ans =
7×3 table
Index Type Trigger
_____ ________ _______
Cont 1 Periodic "0"
TPSSecondaryRun5ms 2 Periodic "0.005"
MonitorRun5ms 3 Periodic "0.005"
ControllerRun5ms 4 Periodic "0.005"
ActuatorRun5ms 5 Periodic "0.005"
APPSnsrRun 6 Periodic "0.01"
TPSPrimaryRun10ms 7 Periodic "0.01"
使用 Order 表中的索引变量来更改模型的执行顺序
schedule.Order.Index('ActuatorRun5ms') = 2;
schedule.Order
ans =
7×3 table
Index Type Trigger
_____ ________ _______
Cont 1 Periodic "0"
ActuatorRun5ms 2 Periodic "0.005"
TPSSecondaryRun5ms 3 Periodic "0.005"
MonitorRun5ms 4 Periodic "0.005"
ControllerRun5ms 5 Periodic "0.005"
APPSnsrRun 6 Periodic "0.01"
TPSPrimaryRun10ms 7 Periodic "0.01"
在 Order 属性内为修改调度而进行的任何移动都应产生有效的调度。为了更轻松地执行调度修改和有效移动,每个分区都与 RateSections 属性中速率相同的分区组合在一起。RateSection 属性的每个元素都包含一个顺序表,该表包含具有相同速率的分区。
schedule.RateSections(2) schedule.RateSections(2).Order
ans =
RateSection with properties:
Rate: "0.005"
Order: [4×3 table]
ans =
4×3 table
Index Type Trigger
_____ ________ _______
ActuatorRun5ms 2 Periodic "0.005"
TPSSecondaryRun5ms 3 Periodic "0.005"
MonitorRun5ms 4 Periodic "0.005"
ControllerRun5ms 5 Periodic "0.005"
使用索引变量在 RateSections 中移动分区。
schedule.RateSections(2).Order.Index('ActuatorRun5ms') = 5;
schedule.Order
ans =
7×3 table
Index Type Trigger
_____ ________ _______
Cont 1 Periodic "0"
TPSSecondaryRun5ms 2 Periodic "0.005"
MonitorRun5ms 3 Periodic "0.005"
ControllerRun5ms 4 Periodic "0.005"
ActuatorRun5ms 5 Periodic "0.005"
APPSnsrRun 6 Periodic "0.01"
TPSPrimaryRun10ms 7 Periodic "0.01"
创建函数来生成随机调度
在本节中,我们创建三个不同函数:randomSchedule、generateSimulationInputs 和 simulateRandomSchedules
randomSchedule 函数用于通过在 schedule 对象中使用索引修改的随机排列来创建随机调度。使用 schedule 对象的 Order 和 RateSections 属性,调度中的分区以不同随机组合移动。使用这些随机创建的调度,对模型进行仿真并比较,以研究不同调度对仿真的影响。在函数 randomSchedule 中,输入是模型名称。然后使用 get_param 获得模型的 simulink.schedule.OrderedSchedule 对象。schedule 对象及其属性用于修改和随机化调度。为模型的第一个速率部分创建一个变量 firstExecutionOrder。rateSections(1).ExecutionOrder = [firstExecutionOrder(1,:); reSchedule(firstExecutionOrder(2:end,:))] 代码行调用函数 reSchedule 来创建索引的随机排列。
type randomSchedule
function schedule = randomSchedule(model)
% schedule = randomSchedule(model) Produces a
% simulink.schedule.OrderedSchedule that has a randomized permutation
% of the model's original execution order schedule
arguments
model char = bdroot
end
schedule = get_param(model, 'Schedule');
rateSections = schedule.RateSections;
firstOrder = rateSections(1).Order;
% This assumes that the slowest discrete rate is at index 1. This may
% not be the case for all models (ex. JMAAB-B).
rateSections(1).Order = [firstOrder(1,:); reSchedule(firstOrder(2:end,:))];
for i=2:length(rateSections)
rateSections(i).Order = reSchedule(rateSections(i).Order);
end
schedule.RateSections = rateSections;
end
function out = reSchedule(in)
numPartitions = height(in);
in.Index = in.Index(randperm(numPartitions));
out = in;
end
要分析不同调度对模型的影响,请使用不同调度对模型进行仿真。在此函数中,创建一个由 Simulink.SimulationInput 对象组成的数组。通过此 Simulink.SimulationInput 对象数组,您可以使用 Simulink.SimulationInput 对象的 setModelParameters 方法将调度应用于模型。
type generateSimulationInputs
function in = generateSimulationInputs(model, numSimulations)
% in = generateSimulationInputs(model, numSimulations) Generates
% numSimulations Simulink.SimulationInput objects each containing a
% different, randomized execution order schedule
arguments
model char = bdroot
numSimulations double = 10
end
in(numSimulations) = Simulink.SimulationInput();
in = in.setModelName(model);
for idx = 1:numSimulations
in(idx) = in(idx).setModelParameter('Schedule', randomSchedule(model));
end
end
在最后一个函数中,使用 Simulink.SimulationInput 对象数组来运行多个仿真。在仿真完成后,您可以在仿真数据检查器中绘制所有仿真的输出。
type simulateRandomSchedules
function out = simulateRandomSchedules(model, numSimulations)
% out = simulateRandomSchedules(model, numSimulations) Simulates a
% model numSimulations number of times. Each simulation has a
% randomized execution order schedule.
arguments
model char = bdroot
numSimulations double = 10
end
in = generateSimulationInputs(model, numSimulations);
out = sim(in);
plot(out);
end
执行函数
现在为 ScheduleEditorAPIWithSubsystemPartitions 模型运行上述函数。首先,使用 randomSchedule 函数创建随机生成的调度,然后,使用 generateSimulationInputs 函数生成 Simulink.SimulationInput 对象数组,并使用 simulateRandomSchedule 函数对具有不同调度的模型进行仿真,并且绘制其结果以供比较。我们用 15 个随机生成的调度运行仿真。
simulateRandomSchedules(model,15)
[12-Aug-2025 19:14:11] Running simulations... [12-Aug-2025 19:14:24] Completed 1 of 15 simulation runs [12-Aug-2025 19:14:26] Completed 2 of 15 simulation runs [12-Aug-2025 19:14:28] Completed 3 of 15 simulation runs [12-Aug-2025 19:14:31] Completed 4 of 15 simulation runs [12-Aug-2025 19:14:34] Completed 5 of 15 simulation runs [12-Aug-2025 19:14:36] Completed 6 of 15 simulation runs [12-Aug-2025 19:14:38] Completed 7 of 15 simulation runs [12-Aug-2025 19:14:39] Completed 8 of 15 simulation runs [12-Aug-2025 19:14:41] Completed 9 of 15 simulation runs [12-Aug-2025 19:14:43] Completed 10 of 15 simulation runs [12-Aug-2025 19:14:45] Completed 11 of 15 simulation runs [12-Aug-2025 19:14:47] Completed 12 of 15 simulation runs [12-Aug-2025 19:14:49] Completed 13 of 15 simulation runs [12-Aug-2025 19:14:51] Completed 14 of 15 simulation runs [12-Aug-2025 19:14:53] Completed 15 of 15 simulation runs ans = 1x15 Simulink.SimulationOutput array