使用调度编辑器 API 为模型创建和分析随机调度
此示例使用调度编辑器 API 对调度执行操作。然后,它使用函数来生成随机调度,并在仿真数据检查器中对这些调度进行分析
打开模型并获取调度对象
打开节气门位置控制系统的模型,使用 get_param
获得 simulink.schedule.OrderedSchedule
对象。此对象包含当前调度。
model = 'ScheduleEditorAPIWithSubsystemPartitions'; open_system(model); schedule = get_param(model,'Schedule')
schedule = OrderedSchedule with properties: Order: [7×3 table] RateSections: [3×1 simulink.schedule.RateSection] Events: [0×1 simulink.schedule.Event] Description: ''
检查调度对象
调度对象具有 Order
属性,该属性包含模型中各分区的执行顺序。Order
属性显示一个包含分区名称、其索引、类型及其触发器的表。
schedule.Order
ans = 7×3 table Index Type Trigger _____ ________ _______ Cont 1 Periodic "0" TPSSecondaryRun5ms 2 Periodic "0.005" MonitorRun5ms 3 Periodic "0.005" ControllerRun5ms 4 Periodic "0.005" ActuatorRun5ms 5 Periodic "0.005" APPSnsrRun 6 Periodic "0.01" TPSPrimaryRun10ms 7 Periodic "0.01"
使用 Order
表中的索引变量来更改模型的执行顺序
schedule.Order.Index('ActuatorRun5ms') = 2;
schedule.Order
ans = 7×3 table Index Type Trigger _____ ________ _______ Cont 1 Periodic "0" ActuatorRun5ms 2 Periodic "0.005" TPSSecondaryRun5ms 3 Periodic "0.005" MonitorRun5ms 4 Periodic "0.005" ControllerRun5ms 5 Periodic "0.005" APPSnsrRun 6 Periodic "0.01" TPSPrimaryRun10ms 7 Periodic "0.01"
在 Order
属性内为修改调度而进行的任何移动都应产生有效的调度。为了更轻松地执行调度修改和有效移动,每个分区都与 RateSections
属性中速率相同的分区组合在一起。RateSection
属性的每个元素都包含一个顺序表,该表包含具有相同速率的分区。
schedule.RateSections(2) schedule.RateSections(2).Order
ans = RateSection with properties: Rate: "0.005" Order: [4×3 table] ans = 4×3 table Index Type Trigger _____ ________ _______ ActuatorRun5ms 2 Periodic "0.005" TPSSecondaryRun5ms 3 Periodic "0.005" MonitorRun5ms 4 Periodic "0.005" ControllerRun5ms 5 Periodic "0.005"
使用索引变量在 RateSections
中移动分区。
schedule.RateSections(2).Order.Index('ActuatorRun5ms') = 5;
schedule.Order
ans = 7×3 table Index Type Trigger _____ ________ _______ Cont 1 Periodic "0" TPSSecondaryRun5ms 2 Periodic "0.005" MonitorRun5ms 3 Periodic "0.005" ControllerRun5ms 4 Periodic "0.005" ActuatorRun5ms 5 Periodic "0.005" APPSnsrRun 6 Periodic "0.01" TPSPrimaryRun10ms 7 Periodic "0.01"
创建函数来生成随机调度
在本节中,我们创建三个不同函数:randomSchedule
、generateSimulationInputs
和 simulateRandomSchedules
randomSchedule
函数用于通过在 schedule
对象中使用索引修改的随机排列来创建随机调度。使用 schedule
对象的 Order
和 RateSections
属性,调度中的分区以不同随机组合移动。使用这些随机创建的调度,对模型进行仿真并比较,以研究不同调度对仿真的影响。在函数 randomSchedule
中,输入是模型名称。然后使用 get_param
获得模型的 simulink.schedule.OrderedSchedule
对象。schedule
对象及其属性用于修改和随机化调度。为模型的第一个速率部分创建一个变量 firstExecutionOrder
。rateSections(1).ExecutionOrder = [firstExecutionOrder(1,:); reSchedule(firstExecutionOrder(2:end,:))]
代码行调用函数 reSchedule
来创建索引的随机排列。
type randomSchedule
function schedule = randomSchedule(model) % schedule = randomSchedule(model) Produces a % simulink.schedule.OrderedSchedule that has a randomized permutation % of the model's original execution order schedule arguments model char = bdroot end schedule = get_param(model, 'Schedule'); rateSections = schedule.RateSections; firstOrder = rateSections(1).Order; % This assumes that the slowest discrete rate is at index 1. This may % not be the case for all models (ex. JMAAB-B). rateSections(1).Order = [firstOrder(1,:); reSchedule(firstOrder(2:end,:))]; for i=2:length(rateSections) rateSections(i).Order = reSchedule(rateSections(i).Order); end schedule.RateSections = rateSections; end function out = reSchedule(in) numPartitions = height(in); in.Index = in.Index(randperm(numPartitions)); out = in; end
要分析不同调度对模型的影响,请使用不同调度对模型进行仿真。在此函数中,创建一个由 Simulink.SimulationInput
对象组成的数组。通过此 Simulink.SimulationInput
对象数组,您可以使用 Simulink.SimulationInput
对象的 setModelParameters
方法将调度应用于模型。
type generateSimulationInputs
function in = generateSimulationInputs(model, numSimulations) % in = generateSimulationInputs(model, numSimulations) Generates % numSimulations Simulink.SimulationInput objects each containing a % different, randomized execution order schedule arguments model char = bdroot numSimulations double = 10 end in(numSimulations) = Simulink.SimulationInput(); in = in.setModelName(model); for idx = 1:numSimulations in(idx) = in(idx).setModelParameter('Schedule', randomSchedule(model)); end end
在最后一个函数中,使用 Simulink.SimulationInput
对象数组来运行多个仿真。在仿真完成后,您可以在仿真数据检查器中绘制所有仿真的输出。
type simulateRandomSchedules
function out = simulateRandomSchedules(model, numSimulations) % out = simulateRandomSchedules(model, numSimulations) Simulates a % model numSimulations number of times. Each simulation has a % randomized execution order schedule. arguments model char = bdroot numSimulations double = 10 end in = generateSimulationInputs(model, numSimulations); out = sim(in); plot(out); end
执行函数
现在为 ScheduleEditorAPIWithSubsystemPartitions
模型运行上述函数。首先,使用 randomSchedule
函数创建随机生成的调度,然后,使用 generateSimulationInputs
函数生成 Simulink.SimulationInput
对象数组,并使用 simulateRandomSchedule
函数对具有不同调度的模型进行仿真,并且绘制其结果以供比较。我们用 15 个随机生成的调度运行仿真。
simulateRandomSchedules(model,15)
[12-Aug-2025 19:14:11] Running simulations... [12-Aug-2025 19:14:24] Completed 1 of 15 simulation runs [12-Aug-2025 19:14:26] Completed 2 of 15 simulation runs [12-Aug-2025 19:14:28] Completed 3 of 15 simulation runs [12-Aug-2025 19:14:31] Completed 4 of 15 simulation runs [12-Aug-2025 19:14:34] Completed 5 of 15 simulation runs [12-Aug-2025 19:14:36] Completed 6 of 15 simulation runs [12-Aug-2025 19:14:38] Completed 7 of 15 simulation runs [12-Aug-2025 19:14:39] Completed 8 of 15 simulation runs [12-Aug-2025 19:14:41] Completed 9 of 15 simulation runs [12-Aug-2025 19:14:43] Completed 10 of 15 simulation runs [12-Aug-2025 19:14:45] Completed 11 of 15 simulation runs [12-Aug-2025 19:14:47] Completed 12 of 15 simulation runs [12-Aug-2025 19:14:49] Completed 13 of 15 simulation runs [12-Aug-2025 19:14:51] Completed 14 of 15 simulation runs [12-Aug-2025 19:14:53] Completed 15 of 15 simulation runs ans = 1x15 Simulink.SimulationOutput array