Index exceeds the number of array elements (23).

1 次查看(过去 30 天)
function main
clc;
clear all;
eps = 0.001;
omega = input(' enter the omega value: ');
beta = input (' enter the beta value: ');
n= 100000;
nx = 26;
ny = 26;
S(1:nx, 1:ny) = 0;
SN(1:nx, 1:ny) = 0;
S(7:nx, 1)= 100;
S(nx, 1:16) = 100;
SN(7:nx, 1)= 100;
SN(nx, 1:16) = 100;
% its number of iteration
coeff = ( 2*(1+beta^2));
for iterations = 1:n
for j = 2:ny-1
a(1:nx-2) = -coeff;
b(1:nx-3)= omega;
c(1:nx-3)= omega;
for i = 2:nx-1
r(i-1)= -coeff*(1-omega)*S(i,j)- omega*beta^2*S(i,j+1)-omega*beta^2*SN(i,j-1);
end
r(1)= r(1)-omega*SN(1,j);
r(nx-2)= r(nx-2)- omega*SN(nx,j);
y = Tridiagonal (c,a,b,r);
for k = 1:nx-2
SN(k+1,j) = y(k);
end
end
for i = 2:nx-1
a(1:ny-2) = -coeff;
b(1:ny-3) = beta*beta;
c(1:ny-3) = beta*beta;
for j = 2:ny-1
r(j-1) = -coeff*(1-omega)*S(i,j)- omega*S(i+1,j)-omega*SN(i-1,j);
end
r(1) = r(1)-SN(i,1);
r(ny-2)= r(ny-2)- SN(i,ny);
y = Tridiagonal (c,a,b,r);
for k = 1:ny-2
SN (i,k+1)= y(k);
end
end
error = abs(SN-S);
totalerror = sum(error,'all');
if totalerror <= eps
break
end
S = SN;
end
iterations
contour(SN');
end
function x = Tridiagonal(e,f,g,r)
% Tridiagonal: Tridiagonal equation solver banded system
% x = Tridiagonal(e,f,g,r): Tridiagonal system solver.
% input:
% e = subdiagonal vector
% f = diagonal vector
% g = superdiagonal vector
% r = right hand side vector
% output:
% x = solution vector
n=length(f);
% forward elimination
for k = 2:n
factor = e(k)/f(k-1);
f(k) = f(k) - factor*g(k-1);
r(k) = r(k) - factor*r(k-1);
end
% back substitution
x(n) = r(n)/f(n);
for k = n-1:-1:1
x(k) = (r(k)-g(k)*x(k+1))/f(k);
end
end
COMMAND WINDOW;
enter the omega value: 1.3
enter the beta value: 1
Index exceeds the number of array elements (23).
Error in adior1>Tridiagonal (line 71)
factor = e(k)/f(k-1);
Error in adior1 (line 28)
y = Tridiagonal (c,a,b,r);

回答(1 个)

Walter Roberson
Walter Roberson 2021-10-10
nx = 26;
a(1:nx-2) = -coeff;
You do not otherwise initialize a before you call the function, so a is going to be length nx-2 which would be 26-2 = 24
c(1:nx-3)= omega;
You do not otherwise initialize c before you call the function, so c is going to be length nx-3 which would be 26-3 = 23
y = Tridiagonal (c,a,b,r);
c (shorter vector) gets passed in first position, a (longer vector) gets passed in second position
function x = Tridiagonal(e,f,g,r)
first position (shorter vector) gets named e inside the function; second position (longer vector) gets named f inside the function.
n=length(f);
That is length() of the second position, the longer vector. So it would be n = 24
for k = 2:n
k can be a maximum of 24
factor = e(k)/f(k-1);
e is the shorter vector, and would be indexed up to n = 24. But e is shorter and only has 23 elements.
  2 个评论
Aman Murkar
Aman Murkar 2021-10-10
What changes should I do to run this code? Because I am new at matlab so I am just trying to solve probems

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Operating on Diagonal Matrices 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by