How to deal with the connection between symbolic caculations and numerical caculations?

2 次查看(过去 30 天)
First I need to do symbolic calculations to get the required equations. Then I use the equations for numerical calculations.
For example, I obtain the equation Ge1=-1/((2*s + 1)/(s/20 + 1) + s^2*(s/10 + 1)) by symbolic calculations.
Then If Ge1_1=-1/((2*s + 1)/(s/20 + 1) + s^2*(s/10 + 1)), one can do numerical calculations.
And I can't do numerical calculations when I want Ge1_1=Ge1.
I don't know how to deal with the connection between symbolic caculations and numerical caculations. Is there a way to solve the problem? Thank you for reading and help.
Matlab Code:
syms s
kp=(2*s+1)/(0.05*s+1);
H=1/(s^2*(0.1*s+1));
P12_1=[-1 / H - kp];
Ge1=inv(P12_1)
s=tf('s')
w=logspace(-1,1,1000);
Ge1_1=Ge1;
% Ge1_1=-1/((2*s + 1)/(s/20 + 1) + s^2*(s/10 + 1));
[mag,pha,w]=bode(Ge1_1,w);

采纳的回答

Torsten
Torsten 2022-3-21
"matlabFunction" converts symbolic expressions into function handles for numerical calculations.
help matlabFunction
  1 个评论
Cola
Cola 2022-3-23
编辑:Cola 2022-3-23
@Torsten Thank you so much.
Matlab code:
syms s
kp=(2*s+1)/(0.05*s+1);
H=1/(s^2*(0.1*s+1));
P12_1=[-1/H-kp];
Ge1=inv(P12_1);
Ge1 = 
omega=logspace(-1,1,1000);
Ge1_0=matlabFunction(Ge1);
Ge1_0 = function_handle with value:
@(s)-1.0./((s.*2.0+1.0)./(s./2.0e+1+1.0)+s.^2.*(s./1.0e+1+1.0))
Ge1_1=abs(Ge1_0(1i*omega));

请先登录,再进行评论。

更多回答(1 个)

Paul
Paul 2022-3-23
Of course, the symbolic approach will work and might even have some benefits (IDK), but just want to make sure you're aware that it's not really necessary.
% symbolic approach
syms s
kp=(2*s+1)/(0.05*s+1);
H=1/(s^2*(0.1*s+1));
P12_1=[-1 / H - kp;];
Ge1=inv(P12_1);
[num,den] = numden(Ge1);
Ge1 = num/den
Ge1 = 
% control system toolbox functionality
s = tf('s');
kp=(2*s+1)/(0.05*s+1);
H=1/(s^2*(0.1*s+1));
P12_1=[-1 / H - kp;];
Ge1=inv(P12_1);
Ge1 = minreal(Ge1) % normalizes numerator and denominator for comparison to symbolic result, not necessary otherwise
Ge1 = -10 s - 200 ------------------------------------ s^4 + 30 s^3 + 200 s^2 + 400 s + 200 Continuous-time transfer function.
  3 个评论
Steven Lord
Steven Lord 2022-3-23
If you wanted to go directly from the symbolic Ge1 to the tf object Ge1 you could extract the numerator and denominator from the symbolic Ge1 with numden as you did and then convert those symbolic polynomials into vectors of polynomial coefficients with sym2poly.
syms s
kp=(2*s+1)/(0.05*s+1);
H=1/(s^2*(0.1*s+1));
P12_1=[-1 / H - kp;];
Ge1=inv(P12_1);
[num,den] = numden(Ge1)
num = 
den = 
N = sym2poly(num)
N = 1×2
-10 -200
D = sym2poly(den)
D = 1×5
1 30 200 400 200
You can use N and D to create the tf object.
T = tf(N, D)
T = -10 s - 200 ------------------------------------ s^4 + 30 s^3 + 200 s^2 + 400 s + 200 Continuous-time transfer function.

请先登录,再进行评论。

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by