Numerical Solution to second order coupled system of boundary value equations

3 次查看(过去 30 天)
Hello,
I have two second order coupled boundary value problems, and I could not find a method to solve them numerically
(d^2(s)/dx^2) = B(s-f);
(d^2(f)/dx^2) = (K(x)-B(s-f))/A;
Boundary Conditions:
s(0) = 0;
f(0) = 0;
at x=1; ds/dx = 0;
at x=1; df/dx = 0;
A and B are constants, and K(x) is known. I would like to find s(x), and f(x)
What is the most appropriate method and how can i solve the equations? Can you help on this?
  2 个评论
Sam Chak
Sam Chak 2022-4-4
Since A, B, , and two of the initial values and are known, you can possibly use the SHOOTING METHOD with ode45 to solve the ODEs by considering the boundary conditions as a multivariate function of initial conditions at some point, reducing the boundary value problem to finding the initial values that satisfy .

请先登录,再进行评论。

回答(1 个)

Torsten
Torsten 2022-4-4
Use MATLAB's bvp4c.
  2 个评论
Torsten
Torsten 2022-4-4
Transfer the array K to the function where you define your ODEs.
Then, for a given value of x from bvp4c, you can use interp1 to interpolate the corresponding value of K(x) and insert this value into your function.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by