How to perform Principal component analysis

2 次查看(过去 30 天)
Hi,
I have 10 variables, and the correlation between each single variable is very poor, so I want to perform the PCA such as to see the correlation by grouping the variable based on their similar behaviour (similar Rsquare or similar correlation coefficient). Please someone help.
My input data(Each column represent a variable, column1-->Variable1, Column2--> Varaible2,...Column10-->Variable10, for each variable I have 25 observations)
0.74 0.83 0.85 0.63 0.15 0.62 0.56 0.18 0.46 0.53
0.39 0.77 0.56 0.66 0.19 0.57 0.85 0.21 0.10 0.73
0.68 0.17 0.93 0.73 0.04 0.05 0.35 0.91 1.00 0.71
0.70 0.86 0.70 0.89 0.64 0.93 0.45 0.68 0.33 0.78
0.44 0.99 0.58 0.98 0.28 0.73 0.05 0.47 0.30 0.29
0.02 0.51 0.82 0.77 0.54 0.74 0.18 0.91 0.06 0.69
0.33 0.88 0.88 0.58 0.70 0.06 0.66 0.10 0.30 0.56
0.42 0.59 0.99 0.93 0.50 0.86 0.33 0.75 0.05 0.40
0.27 0.15 0.00 0.58 0.54 0.93 0.90 0.74 0.51 0.06
0.20 0.20 0.87 0.02 0.45 0.98 0.12 0.56 0.76 0.78
0.82 0.41 0.61 0.12 0.12 0.86 0.99 0.18 0.63 0.34
0.43 0.75 0.99 0.86 0.49 0.79 0.54 0.60 0.09 0.61
0.89 0.83 0.53 0.48 0.85 0.51 0.71 0.30 0.08 0.74
0.39 0.79 0.48 0.84 0.87 0.18 1.00 0.13 0.78 0.10
0.77 0.32 0.80 0.21 0.27 0.40 0.29 0.21 0.91 0.13
0.40 0.53 0.23 0.55 0.21 0.13 0.41 0.89 0.53 0.55
0.81 0.09 0.50 0.63 0.56 0.03 0.46 0.07 0.11 0.49
0.76 0.11 0.90 0.03 0.64 0.94 0.76 0.24 0.83 0.89
0.38 0.14 0.57 0.61 0.42 0.30 0.82 0.05 0.34 0.80
0.22 0.68 0.85 0.36 0.21 0.30 0.10 0.44 0.29 0.73
0.79 0.50 0.74 0.05 0.95 0.33 0.18 0.01 0.75 0.05
0.95 0.19 0.59 0.49 0.08 0.47 0.36 0.90 0.01 0.07
0.33 0.50 0.25 0.19 0.11 0.65 0.06 0.20 0.05 0.09
0.67 0.15 0.67 0.12 0.14 0.03 0.52 0.09 0.67 0.80
0.44 0.05 0.08 0.21 0.17 0.84 0.34 0.31 0.60 0.94
Many thanks in advance.

采纳的回答

the cyclist
the cyclist 2016-7-30
If you have the Statistics and Machine Learning Toolbox, you can used the pca function.

更多回答(1 个)

Image Analyst
Image Analyst 2016-7-30
编辑:Image Analyst 2016-7-30
See plotmatrix() in the Statistics and Machine Learning Toolbox.
To "see the correlation":
plotmatrix(yourMatrix);
  5 个评论
Image Analyst
Image Analyst 2016-7-31
I don't know what that means. There is no question mark, so is that a question? What do you mean by automatically as opposed to manually in this situation?
But how can you group different number of observations (columns) together. If so, then how can you compare a new columns with 3 columns grouped together with another one that has only 2 columns grouped together?
the cyclist
the cyclist 2016-7-31
Mekala, PCA is a specific technique that has a specific use. It seems like you need a deeper understand of the technique. It is difficult to teach you all of PCA in this forum.
What PCA "automatically" does is calculate the combination of variables that explains the most variation of another variable. There is no "manual" grouping in the function.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Dimensionality Reduction and Feature Extraction 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by