Forming 25 portfolios in a double sort

1 次查看(过去 30 天)
Hello everyone, i've got the following problem. I want to create 25 portfolios sorted by two variables. So at the end i should sort one variable at the quintiles and the other variable at the quintiles which will give me 25 portfolios if I combine them. I have a solution for this, but my loops work too long (over 2 hours). Here is my first and my second loop out of an overall of 6 loops in overall.
Loop 1 for a quintile sort for the first variable
% 5 portfolios sorted for size
s1 = NaN(size(NSI));
s2 = NaN(size(NSI));
s3 = NaN(size(NSI));
s4 = NaN(size(NSI));
s5 = NaN(size(NSI));
u = 1;
for m=1:12:589;
n=min(594, m + 12 - 1);
for i=1:size(NSI,2)
if me(u,i) <= prctile(me(u,:),20,2);
s1(m:n,i) = 1;
elseif me(u,i) > prctile(me(u,:),20,2) & me(u,i) <= prctile(me(u,:),40,2);
s2(m:n,i) = 1;
elseif me(u,i) > prctile(me(u,:),40,2) & me(u,i) <= prctile(me(u,:),60,2);
s3(m:n,i) = 1;
elseif me(u,i) > prctile(me(u,:),60,2) & me(u,i) <= prctile(me(u,:),80,2);
s4(m:n,i) = 1;
elseif me(u,i) > prctile(me(u,:),80,2);
s5(m:n,i) = 1;
end
end
u = u + 12;
end
Loop 2 where I take the first portfolio of the first variable
% 5 portfolios sorted for book-to market for the smallest size portfolio
s1b1 = NaN(size(NSI));
s1b2 = NaN(size(NSI));
s1b3 = NaN(size(NSI));
s1b4 = NaN(size(NSI));
s1b5 = NaN(size(NSI));
u = 1;
for m=1:12:589;
n=min(594, m + 12 - 1);
for i=1:size(NSI,2)
if beme(u,i) <= prctile(beme(u,:),20,2);
s1b1(m:n,i) = s1(m:n,i);
elseif beme(u,i) > prctile(beme(u,:),20,2) & beme(u,i) <= prctile(beme(u,:),40,2);
s1b2(m:n,i) = s1(m:n,i);
elseif beme(u,i) > prctile(beme(u,:),40,2) & beme(u,i) <= prctile(beme(u,:),60,2);
s1b3(m:n,i) = s1(m:n,i);
elseif beme(u,i) > prctile(beme(u,:),60,2) & beme(u,i) <= prctile(beme(u,:),80,2);
s1b4(m:n,i) = s1(m:n,i);
elseif beme(u,i) > prctile(beme(u,:),80,2);
s1b5(m:n,i) = s1(m:n,i);
end
end
u = u + 12;
end
to be continued for the other 4 portfolios.
Is there a smarter way to get the 25 portfolios?. Thanks in advance.

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Portfolio Optimization and Asset Allocation 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by