Finding point of intersection between a line and a sphere
37 次查看(过去 30 天)
显示 更早的评论
Hello all,
I have a MATLAB code that plots a 3D sphere using:
[xs,ys,zs] = sphere(10);
surface = surf(350*zs+1000,350*ys,350*xs);
I also have a line that represents the normal between three points (labeled P0, P1, P2) on a plane, which is plotted from the middle-point between all three points:
P0 = [tz1,ty1,tx1]; P1 = [tz2,ty2,tx2]; P2 = [tz3,ty3,tx3]; %represent a triangle
Pm = mean([P0;P1;P2]); %represents the midpoint between P0, P1 and P2
normal = cross(P0-P1,P0-P2);
cn = normal + Pm;
normal_vector = plot3([Pm(1) cn(1)],[Pm(2) cn(2)],[Pm(3) cn(3)],'k--'); %normal
What I am trying to do is find the coordinates of the point of intersection between the line "normal_vector" and the sphere "surface".
This is what the plot looks like:
The points P0, P1 and P2 are shown as coloured circles and are always inside the sphere, so their normal is always showing 'outwards' through the surface of the sphere.
Thank you in advance!
0 个评论
采纳的回答
Torsten
2019-6-6
编辑:Torsten
2019-6-6
Sphere:
(x-xs)^2 + (y-ys)^2 + (z-zs)^2 = R^2
Line:
[x y z] = Pm + l*normal
Thus
(Pm(1)+l*normal(1)-xs)^2 + (Pm(2)+l*normal(2)-ys)^2 + (Pm(3)+l*normal(3)-zs)^2 = R^2
Solve for (the positive) l.
7 个评论
Torsten
2019-6-7
Ah, I thought (xs,ys,zs) is the center of the sphere.
You have to solve
sol = solve((Pm1+(l*normal1) - xc)^2 + (Pm2+(l*normal2) - yc)^2 + (Pm3+(l*normal3) - zc)^2 == R^2,l)
where (xc,yc,zc) is the center of the sphere.
更多回答(2 个)
EVELYN ROSSANA PARRA LOPEZ
2019-10-14
The last line of code is summarized in replacing the terms x, y and z of the parametric equation of a line in space, in the equation that describes a sphere, and the variable to be found is the parameter, in this case l. I apply the same with a sphere and a known line, but the answer is as follows:
CODE LINES:
syms t
sol=solve((0.2118+t*0.8473-1).^2+(0.06883+t*0.2754-0.5).^2+(0.1135+t*0.4541-0.5).^2==((0.25).^2),t)
RESULT:
sol=
240523932/249992315 - (10^(1/2)*3160661400392057^(1/2))/999969260
(10^(1/2)*3160661400392057^(1/2))/999969260 + 240523932/249992315
0 个评论
Jason Der
2021-7-30
The accepted answer works, but I wasn't able to find a way to vectorize it for a large dataset.
However, I did read an elegant solution on eng-tips at the following url:
Hope this helps someone one day.
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Surface and Mesh Plots 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!