Cody

# Problem 1946. Fibonacci-Sum of Squares

Solution 2035214

Submitted on 25 Nov 2019 by Rashmi Doijode
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

### Test Suite

Test Status Code Input and Output
1   Pass
n = 5; S = 40; assert(isequal(FibSumSquares(n),S))

f = 1 1 2 f = 1 1 2 3 f = 1 1 2 3 5

2   Pass
n = 8; S = 714; assert(isequal(FibSumSquares(n),S))

f = 1 1 2 f = 1 1 2 3 f = 1 1 2 3 5 f = 1 1 2 3 5 8 f = 1 1 2 3 5 8 13 f = 1 1 2 3 5 8 13 21

3   Pass
n = 11; S = 12816; assert(isequal(FibSumSquares(n),S))

f = 1 1 2 f = 1 1 2 3 f = 1 1 2 3 5 f = 1 1 2 3 5 8 f = 1 1 2 3 5 8 13 f = 1 1 2 3 5 8 13 21 f = 1 1 2 3 5 8 13 21 34 f = 1 1 2 3 5 8 13 21 34 55 f = 1 1 2 3 5 8 13 21 34 55 89

4   Pass
n = 15; S = 602070; assert(isequal(FibSumSquares(n),S))

f = 1 1 2 f = 1 1 2 3 f = 1 1 2 3 5 f = 1 1 2 3 5 8 f = 1 1 2 3 5 8 13 f = 1 1 2 3 5 8 13 21 f = 1 1 2 3 5 8 13 21 34 f = 1 1 2 3 5 8 13 21 34 55 f = 1 1 2 3 5 8 13 21 34 55 89 f = 1 1 2 3 5 8 13 21 34 55 89 144 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

5   Pass
n = 21; S = 193864606; assert(isequal(FibSumSquares(n),S))

f = 1 1 2 f = 1 1 2 3 f = 1 1 2 3 5 f = 1 1 2 3 5 8 f = 1 1 2 3 5 8 13 f = 1 1 2 3 5 8 13 21 f = 1 1 2 3 5 8 13 21 34 f = 1 1 2 3 5 8 13 21 34 55 f = 1 1 2 3 5 8 13 21 34 55 89 f = 1 1 2 3 5 8 13 21 34 55 89 144 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 17 987 1597 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 18 987 1597 2584 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 19 987 1597 2584 4181 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 20 987 1597 2584 4181 6765 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 21 987 1597 2584 4181 6765 10946

6   Pass
n = 26; S = 23843770274; assert(isequal(FibSumSquares(n),S))

f = 1 1 2 f = 1 1 2 3 f = 1 1 2 3 5 f = 1 1 2 3 5 8 f = 1 1 2 3 5 8 13 f = 1 1 2 3 5 8 13 21 f = 1 1 2 3 5 8 13 21 34 f = 1 1 2 3 5 8 13 21 34 55 f = 1 1 2 3 5 8 13 21 34 55 89 f = 1 1 2 3 5 8 13 21 34 55 89 144 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 17 987 1597 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 18 987 1597 2584 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 19 987 1597 2584 4181 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 20 987 1597 2584 4181 6765 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 21 987 1597 2584 4181 6765 10946 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 22 987 1597 2584 4181 6765 10946 17711 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 23 987 1597 2584 4181 6765 10946 17711 28657 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 24 987 1597 2584 4181 6765 10946 17711 28657 46368 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 25 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 26 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 121393