# isinconvexset

Function to check if a vertex is located inside or outside a given convex set, boundary not included (opened set). Supports dimensions 2 and 3.

Author & support : nicolas.douillet (at) free.fr, 2018-2020.

## Syntax

isin = isinconvexset(V, H, M);

## Description

isin = isinconvexset(V, H, M) computes the boolean isin which is true/logical 1 in the case the vertex M belongs to the opened convex set (V,H) defined by the vertex set V, and its hyperplane set H. isin is false/logical 0 in the case vertex M belongs to the complementary set or the boundary convex hull.

convhull

## Input arguments

```      [ |  |  |]
- V = [Vx Vy Vz], real matrix double, the convex set, with size(V,1) > size(V,2) to define a relevant convex set.
[ |  |  |]```
```      [ |  |]
- H = [i1 i2], positive integer matrix double, the hyperplane set (edge list in 2D, face list in 3D). Size(H) = [nb_hyperplanes,2].
[ |  |]```
```      [ |  |  |]
- M = [Mx My Mz], real row vector or matrix double, the coordinates of the vertex / vertices  to check. Size(M,2) = size(V,2).
[ |  |  |]```

## Output argument

```         [      |      ]
- isin = [logical 1 / 0], logical true (1)/false (0) scalar / column vector. The boolean result. Size(isin) = [size(M,1),1].
[      |      ]```

## Example #1 : 2D convex hull of random point cloud

```N = 16;
V = 2*(rand(N,2)-0.5);
H_raw = convhull(V);
nh = numel(H_raw);
H = repelem(H_raw',cat(2,1,2*ones(1,nh-2),1));
H = reshape(H,[2,nh-1])';
[A B] = meshgrid(-1:0.1:1);
M = cat(2,A(:),B(:));
isin = isinconvexset(V,H,M);
figure
line(V(H_raw,1),V(H_raw,2),'Color',[0 0 1],'LineWidth',2), hold on;
ColorSpec = num2cell(cat(2,~isin,isin,zeros(size(isin,1),1)),2);
cellfun(@(r1,r2) plot(r1(1,1),r1(1,2),'+','Color',r2,'MarkerSize',4,'LineWidth',4),num2cell(M,2),ColorSpec,'un',0);
set(gcf,'Color',[0 0 0]), set(gca,'Color',[0 0 0],'XColor',[1 1 1],'YColor',[1 1 1],'FontSize',16);
xlabel('X'), ylabel('Y');
axis equal, axis tight;
```

## Example #2 : 3D convex hull of random point cloud

```N = 32;
V = 2*(rand(N,3)-0.5);
[A B C] = meshgrid(-1:0.3:1,-1:0.3:1,-1:0.3:1);
M = cat(2,A(:),B(:),C(:));
H = convhull(V);
vtx_idx = unique(H(:));
isin = isinconvexset(V,H,M);
figure;