- Structural analysis, including linear static, dynamic, and modal analysis
- Heat transfer analysis for conduction-dominant problems
- General linear and nonlinear PDEs for stationary, time-dependent, and eigenvalue problems
- 2D and 3D geometry import from STL files and mesh data
- Automatic meshing using triangular and tetrahedral elements with linear or quadratic basis functions
- User-defined functions for specifying PDE coefficients, boundary conditions, and initial conditions
- Plotting and animating results, as well as derived and interpolated values

With structural analysis, you can predict how components behave under loading, vibration, and other physical effects. This helps you design robust mechanical components by validating designs through simulation and reducing the need for physical testing.

Using linear static analysis to compute displacement, stress, and strain under load, you can evaluate a component’s mechanical strength and behavior.

Mechanical components can resonate, which can result in deformation and potentially dangerous and damaging large-amplitude vibrations. Partial Differential Equation Toolbox™ lets you perform modal analysis to find natural frequencies and mode shapes to identify and prevent potential resonances.

For time-varying loads, you can perform transient dynamic simulation to compute displacement, velocity, acceleration, stress, and strain. You can plot or animate the deformed shapes and compute reaction forces.

Partial Differential Equation Toolbox uses the finite element method to solve problems. A typical workflow consists of importing geometry; generating a mesh; defining the physics, including materials as well as boundary and initial conditions; and then solving and visualizing your results. The toolbox provides functions for each step in the workflow, allowing you to perform finite element analysis (FEA) in just a few lines of code.

The MATLAB^{®} language makes it easy to customize, automate, and integrate your FEA applications. Partial Differential Equation Toolbox integrates with other MATLAB products, allowing you to build and share custom applications with MATLAB Compiler™, run design of experiments in parallel with Parallel Computing Toolbox™, and leverage high-fidelity simulation in Simulink^{®} and Simscape™.

You can import 2D or 3D geometry in STL format or create geometry directly from mesh data.

Partial Differential Equation Toolbox provides functions to create simple 3D multidomain geometries as well as multiple ways to create 2D geometries.

You can automatically generate a finite element mesh using triangular elements in 2D and tetrahedral elements in 3D. You can specify either piecewise linear or quadratic basis functions when meshing, depending on the required accuracy of your solution. You can inspect and analyze the mesh for quality and compute useful metrics like area or volume. For more information on generating finite element meshes, see Meshing.

You can use Partial Differential Equation Toolbox and MATLAB graphics to visualize your solution by creating plots and animations. You can plot the geometry, mesh, results, and derived and interpolated quantities. You can also create multiple subplots and easily customize plot properties.

Partial Differential Equation Toolbox provides you with solutions and their gradients at the mesh nodes and lets you interpolate them within the domain. MATLAB provides extensive functionality for further statistical postprocessing and data analysis.