Building Battery State-of-Health Estimation Pipelines for Electrified Vehicles
Nilesh Kulkarni, NIO Inc.
This talk gives an overview of battery state-of-health (SOH) estimation and prognostics modeling that uses data generated from the vehicle model in the cloud. The vehicle model is comprised of a Simulink® based electric vehicle model that includes Li-Ion cell chemistry-based battery models. While building battery state-of-health pipelines, it is difficult to capture real data from the vehicle in various driving conditions. We took the approach to leverage a calibrated Li-Ion Cell Chemistry model to generate the required data in various driving conditions. We pushed this data to the cloud, then had the data pipelines pick this data and do all the downstream processing. This enabled us to build the data pipelines and the analytics stack without having extensive vehicle data. As we have now started getting real data, we are validating this analytics stack. This talk also discusses leveraging the Simulink code-generation feature to generate C-code and its feasibility for real-time in-vehicle SOH estimation.
Recorded: 30 Apr 2019
Related Products
Learn More
Featured Product
Simulink
Up Next:
Related Videos:
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
亚太
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)