Low Velocity Maneuvering Development with the MathWorks Toolchain
Jonathan Naor, General Motors
Alon Davidi, General Motors
The last hundred meters of an autonomous drive entail unique challenges. There is variability in direction as the vehicle may drive in reverse or perform three-point turns. There are often no road markings, no GPS signal, and no map. This is where a self-driving car is at its most autonomous. The problem statement of the Low Velocity Maneuvering (LVM) team at General Motors is to drive the vehicle in a GPS denied environment with high accuracy, in a variety of parking scenarios such as street parking, valet parking, and learned parking. In this talk we review our LVM development cycle, starting from the architecture management, model-based development, requirements and testing coverage, MIL/SIL/HIL simulations, and code generation for multiple platforms.
Up Next:
Related Videos:
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
亚太
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)