反馈

小迈步第二课:MATLAB深度学习入门之树莓派与GPU应用 (上)

概述

深度学习在训练阶段常用GPU来加速,在推断阶段可以用CPU、GPU、FPGA等硬件实现。在计算资源有限的树莓派(Raspberry Pi)上如何运行复杂的深度神经网络?对CUDA 代码一无所知,如何玩转NVIDIA GPU?

本次微直播紧跟“小迈步第一课:MATLAB深度学习入门课堂”,通过具体MATLAB代码演示与操作,带领大家学习在树莓派ARM CPU和NVIDIA GPU上实现深度学习物品识别。

本次课堂,您将会学习如何将预训练网络自动生成C++ 或者CUDA代码,跨越手写代码的障碍。你还将学会如何使用MATLAB快速对树莓派编程,我们将从如何下载和设置MATLAB对树莓派硬件的支持包开始,到如何使用网络摄像头给大家进行详细的讲解。

课前准备: 

1. 建议参课者先行观看“小迈步第一课:MATLAB深度学习入门课堂”。

2. 建议参课者先行完成以下两门在线课程。

亮点包括

本期课程内容:

小迈步第二课:MATLAB深度学习入门之树莓派与GPU应用 (上)

1. 课程准备篇

  • 基于项目学习与有趣实例
  • 树莓派、NVIDIA GPU与MATLAB连接
  • 自动售卖机实例:在 CPU 和 GPU 上运行深度神经网络,实现商品识别

2. 前期“深度学习入门”小迈步课堂回顾

  • 迁移学习的力量
  • 轻量级CNN模型之SqueezeNet
  • 使用 GPU,训练新网络

关于演示者

阮卡佳,MathWorks 中国高校团队高级工程师。毕业于浙江大学和伦敦帝国理工学院,在MATLAB 数据科学、Simulink 建模仿真、以及自动代码生成领域有多年工作经验;曾就职于 Altera (Intel FPGA)和 Nortel Networks。

录制的: 2019年3月26日