Applications and Methods | Reduced Order Modeling
From the series: Reduced Order Modeling
Reduced order modeling (ROM) is a technique to simplify a high-fidelity mathematical model by reducing its computational complexity while preserving the dominant behavior of the complex model. Engineers use reduced order modeling to speed up system-level desktop simulations of large-scale first-principles models. ROMs are also useful for running real-time simulations for testing on hardware, modeling virtual sensors, and building digital twin applications. Explore different techniques for creating reduced order models with MATLAB® and Simulink® such as data-driven modeling, model-based ROMs, linearization-based methods, and physics-based reduction.
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
亚太
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)